首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pure gas and hydrocarbon vapor transport properties of blends of two glassy, polyacetylene-based polymers, poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(1-phenyl-1-propyne) [PPP], have been determined. Solid-state CP/MAS NMR proton rotating frame relaxation times were determined in the pure polymers and the blends. NMR studies show that PTMSP and PPP form strongly phase-separated blends. The permeabilities of the pure polymers and each blend were determined with hydrogen, nitrogen, oxygen, carbon dioxide, and n-butane. PTMSP exhibits unusual gas and vapor transport properties which result from its extremely high free volume. PTMSP is more permeable to large organic vapors, such as n-butane, than to small, permanent gases, such as hydrogen. PPP exhibits gas permeation characteristics of conventional low free volume glassy polymers; PPP is more permeable to hydrogen than to n-butane. In PTMSP/PPP blends, both n-butane permeability and n-butane/hydrogen selectivity increase as the PTMSP content of the blends increases. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Propane and n-butane sorption in blends of poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) have been determined. Solubilities of propane and n-butane increased as the PTMSP content in the blends increased. This result is consistent with the higher free volume of PTMSP-rich blends and the better thermodynamic compatibility between PTMSP and these hydrocarbons. Propane and n-butane sorption isotherms were well described by the dual-mode model for sorption in glassy polymers. PTMSP/PPP blends are strongly phase-separated, heterogeneous materials. A noninteracting domain model developed for sorption in phase-separated glassy polymer blends suggests that sorption in the Henry's law regions (i.e., the equilibrium, dense phase of the blends) is consistent with the model. However, Langmuir capacity parameters in the blends are lower than predicted from the domain model, suggesting that the amount of nonequilibrium excess free volume associated with the Langmuir sites depends on blend composition. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The suitability of the Guggenheim–Anderson–De Boer (GAB) model for the parameterization of gas sorption isotherms and their dependences on temperature is explored. The GAB model implies that molecules adsorb on inner surfaces of the polymer in multilayers, which contrasts with the assumptions of the classical Dual Mode Sorption (DMS) model which implies the simultaneous occurrence of Henry‐like dissolution and Langmuir's case I adsorption. The GAB model shows similar efficacy of the parameterization of the gas sorption isotherms in polymers as the DMS model. The isosteric heat of adsorption shows clear dependence on relative surface coverage for carbon dioxide sorption in cellulose acetate, polyethylene terephthalate, and the first polymer of intrinsic microporosity (PIM‐1), thus allowing for the occurrence of adsorption multilayers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1490–1495  相似文献   

4.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

5.
Glassy polymers stiffen or soften when exposed to volatile compounds, depending on the specific combination of polymer compound and the specimen history. Relevant to the long-term applicability of the separation membranes, three common membrane glassy polymers are studied in this work. Freshly prepared and 2-years aged films from cellulose triacetate (CTA), poly[1-(trimethylsilyl)-1-propyne] (PTMSP), and the archetypal polymer of intrinsic microporosity (PIM-1) were tested using isothermal Dynamic Mechanical Analysis (DMA) at varied vapor activity. Vapors of organic compounds, in which the polymers do and do not dissolve in the liquid phase (solvents and nonsolvents), were studied at 40 °C, namely: dichloromethane (DCM, solvent), p-xylene (solvent for PTMSP and PIM-1), and methanol (nonsolvent). Functional groups of the mer units sensitive to the dissolution were identified using Raman spectroscopy. All aged films were stiffer than the freshly prepared ones. Stiffening prevailed for most freshly prepared film-vapor pairs at low vapor saturations (activity < ≈0.4), except CTA and PIM-1 in nonsolvent methanol vapors. Softening prevailed for the aged films and higher vapor saturations (activity > ≈0.6). Vapors of the solvents and nonsolvents did not show the expectable prevalence of softening and stiffening, respectively. Physical aging influenced the stiffening and softening of polymer glasses expectably.  相似文献   

6.
A model of continuous‐site distribution for gas sorption in glassy polymers is examined with sorption data of CO2 and Ar in polycarbonate. A procedure is presented for determining from a measured isotherm the number of sorption sites in a polymer, an important parameter that previously had to be assumed. With this parameter value and solubility data obtained at zero pressure, the model can reasonably predict sorption isotherms of CO2 in glassy polycarbonate for a wide temperature range. The number of sorption sites and the average site volume evaluated from CO2 sorption isotherms are employed for the prediction of Ar sorption isotherms with zero‐pressure solubility data and the independently measured partial molar volume of Ar. A reasonable fit to the measured isotherms of Ar is achieved. With the proposed procedure, the continuous‐site model shows several advantages over the conventional dual‐mode sorption model. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 883–888, 2000  相似文献   

7.
Although gas sorption in glassy polymers is a well‐studied phenomenon, no general microscopical model is developed which is able to describe the gas sorption in a wide temperature range using only characteristics of polymer and gas molecule. In this work, sorption isotherms and desorption kinetics of O2, Ar, and N2 for glassy poly(ethyl methacrylate) have been measured in the temperature range from 160 to 308 K. To describe both the phenomena, the model is developed which postulates that, in the frozen structure of glassy polymer, any cavities between macromolecules are the sorption sites for small molecules. The cavities of small size can expand elastically to accommodate a gas molecule. The sorption sites are considered to be the potential wells and their depths are distributed according to Gaussian law. The concentration of sorption sites, their mean depth and depths dispersion, and the frequency of molecules oscillations in the sorption sites are the only parameters which determine both the gas transport and sorption. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 288–296  相似文献   

8.
The solubility, diffusivity, and permeability of ethylbenzene in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) at 35, 45 and 55 °C were determined using kinetic gravimetric sorption and pure gas permeation methods. Ethylbenzene solubility in PTMSP was well described by the generalized dual‐mode model with χ = 0.39 ± 0.02, b = 15 ± 1, and CH = 45 ± 4 cm3 (STP)/cm3 PTMSP at 35 °C. Ethylbenzene solubility increased with decreasing temperature; the enthalpy of sorption at infinite dilution was −40 ± 7 kJ/mol and was essentially equal to the enthalpy change upon condensation of pure ethylbenzene. The diffusion coefficient of ethylbenzene in PTMSP decreased with increasing concentration and decreasing temperature. Activation energies of diffusion were very low at infinite dilution and increased with increasing concentration to a maximum value of 50 ± 10 kJ/mol at the highest concentration explored. PTMSP permeability to ethylbenzene decreased with increasing concentration. The permeability estimated from solubility and diffusivity data obtained by kinetic gravimetric sorption was in good agreement with permeability determined from direct permeation experiments. Permeability after exposure to a high ethylbenzene partial pressure was significantly higher than that observed before the sample was exposed to a higher partial pressure of ethylbenzene. Nitrogen permeability coefficients were also determined from pure gas experiments. Nitrogen and ethylbenzene permeability coefficients increased with decreasing temperature, and infinite dilution activation energies of permeation for N2 and ethylbenzene were −5.5 ± 0.5 kJ/mol and −74 ± 11 kJ/mol, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1078–1089, 2000  相似文献   

9.
This article describes the solubility of carbon dioxide, ethylene and propane in 1‐octene based polyethylene of 0.94, 0.92, 0.904, and 0.87 densities. The isotherms obtained in the gas sorption experimental device display a sorption behavior similar to that of glassy polymers. We apply the dual model to semicrystalline polymers assuming that Henry's sites are related to the amorphous phase, which decreases when the crystallinity percentage increases, whereas the surface of the crystalline phase acts as a Langmuir site with higher gas‐polymer affinity than glassy polymers. The good concordance of the calculated kD values, using the Flory‐Huggins theory of polymer diluent mixtures, with the experimental results suggest that Henry's gas sorption fulfills this theory and, therefore, it may be a suitable way to estimate polymer‐gas enthalpic interactions. Particularly, the variation of kD with the crystallinity fraction is exponential and the proportionality of the total sorption with the amorphous content seems only apparent. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1798–1807, 2007  相似文献   

10.
The gas permeation properties of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and blends of PTMSP and PPP have been determined with hydrocarbon/hydrogen mixtures. For a glassy polymer, PTMSP has unusual gas permeation properties which result from its very high free volume. Transport in PPP is similar to that observed in conventional, low-free-volume glassy polymers. In experiments with n-butane/hydrogen gas mixtures, PTMSP and PTMSP/PPP blend membranes were more permeable to n-butane than to hydrogen. PPP, on the other hand, was more permeable to hydrogen than to n-butane. As the PTMSP composition in the blend increased from 0 to 100%, n-butane permeability increased by a factor of 2600, and n-butane/hydrogen selectivity increased from 0.4 to 24. Thus, both hydrocarbon permeability and hydrocarbon/hydrogen selectivity increase with the PTMSP content in the blend. The selectivities measured with gas mixtures were markedly higher than selectivities calculated from the corresponding ratio of pure gas permeabilities. The difference between mixed gas and pure gas selectivity becomes more pronounced as the PTMSP content in the blend increases. The mixed gas selectivities are higher than pure gas selectivities because the hydrogen permeability in the mixture is much lower than the pure hydrogen permeability. For example, the hydrogen permeability in PTMSP decreased by a factor of 20 as the relative propane pressure (p/psat) in propane/hydrogen mixtures increased from 0 to 0.8. This marked reduction in permanent gas permeability in the presence of a more condensable hydrocarbon component is reminiscent of blocking of permanent gas transport in microporous materials by preferential sorption of the condensable component in the pores. The permeability of PTMSP to a five-component hydrocarbon/hydrogen mixture, similar to that found in refinery waste gas, was determined and compared with published permeation results for a 6-Å microporous carbon membrane. PTMSP exhibited lower selectivities than those of the carbon membrane, but permeability coefficients in PTMSP were nearly three orders of magnitude higher. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The polymerization of 1,2‐disubstituted acetylenes [1‐(trimethylgermyl)‐1‐propyne and 1‐(trimethylsilyl)‐1‐propyne] initiated by Nb‐ and Ta‐based catalytic systems was studied within a wide temperature range (?10 to +80 °C) with solvents (cyclohexane, CCl4, toluene, anisol, and n‐chlorobutane) with variable dielectric constants (2.023–7.390). Conditions ensuring the synthesis of poly[1‐(trimethylsilyl)‐1‐propyne] (PTMSP) containing 20–80% cis units and poly[1‐(trimethylgermyl)‐1‐propyne] (PTMGP) containing 3–65% cis units were determined. The PTMSP and PTMGP samples were amorphous, exhibited a two‐phase structure characterized by the presence of less ordered regions and regions with an enhanced level of ordering, and differed in solubility. A correlation was found between the cis/trans ratio and the morphology, the geometrical density of PTMSP and PTMGP films, and the gas permeability of the polymers. The gas permeability and solubility behavior of PTMSP and PTMGP were examined in terms of the molecular characteristics of the polymer samples (the thermodynamic Kuhn segment and the Kerr electrooptic effect). It was demonstrated that the gas permeability, as well as the solubility of the polymers, was defined by their supramolecular ordering, which depended on the lengths of continuous sequences composed of units of analogous microstructures and on the flexibility of macrochains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2133–2155, 2003  相似文献   

12.
Sorption of single‐component vapors of benzene (Bz), n‐hexane (Hx), and cyclohexane (Cx), and of binary liquid mixtures of Bz/Hx and Bz/Cx in a polyimide from 3,3′,4,4′‐diphenylsulfone‐tetracarboxylic dianhydride (DSDA) and 2,8(6)‐dimethyl‐3,7‐diaminobenzothiophene‐5,5‐dioxide (DDBT) were investigated in detail at 333 K. Sorption and desorption of vapors followed the non‐Fickian kinetics and the sorption isotherms were concave to the vapor activity. For the binary liquids, the sorption isotherms of the Bz component were concave to the Bz composition in feed, whereas those of Hx and Cx were convex because of competitive sorption. As a result, the solubility selectivity was much larger than the sorption ratio of pure liquids. The concentration‐averaged diffusion coefficients of Bz (D̄Bz) and Hx (D̄Hx) were evaluated using the sorption and pervaporation data of the polyimide membrane toward the binary mixtures. A kind of coupling effect of the coexisting component on D̄ was observed. That is, D̄ of penetrant with smaller molecular size (Hx and Bz for Bz/Hx and Bz/Cx systems, respectively) was reduced by the presence of penetrant with larger molecular size (Bz and Cx, respectively) and vice versa. D̄Bz was similar to D̄Hx, but much larger than D̄Cx. The difference in PV behavior between Bz/Hx and Bz/Cx systems for glassy polymer membranes was understood based on the aforementioned features of sorption and diffusion. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2954–2964, 2000  相似文献   

13.
In contrast to common glassy polymers, poly(1-trimethylsilyl-1-propyne) (PTMSP), a high free volume glassy polymer, shows a preferable permeation of large condensable organic vapors in comparison to permanent gases. In order to investigate this phenomenon, a systematic permeability study over a large activity range has been performed on PTMSP with three types of volatile organic compounds (VOCs) as diffusing probes: toluene, dimethylketone and dichloromethane. PTMSP was synthesized with different catalytic systems (Nb or Ta based) able to induce controlled sub-molecular cistrans structures. Whereas dimethylketone and dichloromethane permeability can be correctly described by a classical dual-mode equation, a peculiar bell shaped pattern was obtained for toluene, with a minimum permeability located at an activity value around a=0.3–0.4. In that case, only a dual-mode expression taking into account a concentration dependent diffusion coefficient can account for the results.

On the other hand some apparent conflicting data recorded from PTMSP brand new films were related to the microstructure of the polymer main chain thanks to 13C NMR spectroscopy analysis showing importance of cis- and trans-forms of the main chain of PTMSP. cis-Structure is more flexible and can be responsible for the creation of a higher density physical network (HDN) in polymeric matrix; conversely, trans-structure is more rigid and can provide lower density physical network (LDN). The higher permeability recorded for several probes through PTMSP synthesized with TaCl5/Al(i-Bu)3 catalytic system compared to those of NbCl5 based polymer can be explained by the geometric difference of the macromolecule networks.  相似文献   


14.
Poly(1-trimethylsilyl-1-propyne) (PTMSP), a high free-volume glassy di-substituted polyacetylene, has the highest gas permeabilities of all known polymers. The high gas permeabilities in PTMSP result from its very high excess free volume and connectivity of free volume elements. Permeability coefficients of permanent gases in PTMSP decrease dramatically over time due to loss of excess free volume. The effects of aging on gas permeability and selectivity of PTMSP membranes continuously exposed to a 2 mol % n-butane/98 mol % hydrogen mixture over a period of 47 days are reported. The permeation properties of PTMSP membranes are quite stable when the polymer is continuously exposed to a gas mixture containing a highly sorbing organic vapor such af n-butane. The n-butane/hydrogen selectivity was essentially constant for the 47-day test period at a value of 29, or 88% of the initial value of the as-cast film of 33. Condensable gases such as n-butane may serve as a “filler” in the nonequilibrium free volume of the polymer, thereby preserving the high level of excess free volume. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1483–1490, 1997  相似文献   

15.
This article discusses the diffusion and solubility behavior of methanol/methyl tert‐butyl ether (MTBE) in glassy 6FDA–ODA polyimide prepared from hexafluoroisopropylidene 2,2‐bis(phthalic anhydride) (6FDA) and oxydianiline (ODA). The diffusion coefficients and sorption isotherm of methanol vapor in 6FDA–ODA polyimide at various pressures and film thicknesses were obtained with a McBain‐type vapor sorption apparatus. Methanol/MTBE mixed‐liquid sorption isotherms were obtained by head‐space chromatography and compared with a pure methanol sorption isotherm obtained with a quartz spring balance. Methanol sorption isotherms obtained with the two methods were almost identical. Both methanol sorption isotherms obeyed the dual‐mode model at a lower activity, which is typical for glassy polymer behavior. The MTBE was readily sorbed into the polymer in the presence of methanol, but the MTBE sorption isotherm exhibited a highly nonideal behavior. The MTBE sorption levels were a strong function of the methanol sorption level. Methanol diffusion in the polymer was analyzed in terms of the partial immobilization model with model parameters obtained from average diffusion coefficients and the dual‐mode sorption parameters. Simple average diffusion coefficients were obtained from sorption kinetics experiments, whereas the dual‐mode sorption parameters were obtained from equilibrium methanol sorption experiments. An analysis of the mobility and solubility data for methanol indicated that methanol tends to form clusters at higher sorption levels. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2254–2267, 2000  相似文献   

16.
A theoretical approach has been developed to describe the sorption and diffusion processes of low weight molecular gases and vapors in polymers at wide ranges of sorbate concentration. The equation of an S‐shaped gas sorption isotherm in glassy polymer matrix has been derived. The concentration dependence of the sorbate molecule diffusion coefficient has been established. For an S‐shaped sorption isotherm, this dependence is nonmonotonous. The conditions of cluster formation of sorbate molecules have been analyzed within the proposed approach, in which it is possible to determine a correlation between these conditions and parameters of sorption isotherm. The comparison of the experimental and theoretical data provides an assessment of the microscopic characteristics of investigated polymer–vapor systems, such as the distances between vapor molecules in a matrix corresponding to intermolecular repulsion and attraction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2314–2323, 1999  相似文献   

17.
Isotactic polypropylene nanocomposites were obtained by the melt blending of polypropylene‐graft‐maleic anhydride and organophilic layered silicate (OLS) consisting of synthetic fluorohectorite modified by cation exchange with protonated octadecylamine. The composition of the inorganic clay was varied between 2.5 and 10 wt %, and films of the composites were obtained via hot‐press molding. X‐ray analysis showed that nanocomposites in which silicate layers were either delaminated or ordered as in an intercalated structure were obtained. The elastic modulus of the samples was higher than that of the pure polymer over a wide temperature range and increased with increasing inorganic content. The transport properties, sorption and diffusion, were measured for two organic vapors, dichloromethane and n‐pentane. For both vapors, the sorption was not very different from that of the pure polymer, whereas the zero‐concentration diffusion parameter strongly decreased with increasing OLS content. Therefore, the permeability, that is, the product of sorption and diffusion, decreased for both vapors as a result of the decreased value of the diffusion parameter. The decrease was higher for the less interacting n‐pentane. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1798–1805, 2003  相似文献   

18.
Poly(1-trimethylsilyl-1-propyne) [PTMSP], a high-free-volume glassy polymer, has the highest gas permeability of any known synthetic polymer. In contrast to conventional, low-free-volume, glassy polymers, PTMSP is more permeable to large, condensable organic vapors than to permanent gases. The organic-vapor/permanent-gas selectivity of PTMSP based on pure gas measurements is low. In organic-vapor/permanent-gas mixtures, however, the selectivity of PTMSP is much higher because the permeability of the permanent gas is reduced dramatically by the presence of the organic vapor. For example, in n-butane/methane mixtures, as little as 2 mol% n-butane (relative n-butane pressure 0.16) lowers the methane permeability 10-fold from the pure methane permeability. The result is that PTMSP shows a mixed-gas n-butane/methane selectivity of 30. This selectivity is the highest ever observed for this mixture and is completely unexpected for a glassy polymer. In addition, the gas mixture n-butane permeability of PTMSP is considerably higher than that of any known polymer, including polydimethylsiloxane, the most vapor-permeable rubber known. PTMSP also shows high mixed-gas selectivities and vapor permeabilities for the separation of chlorofluorocarbons from nitrogen. The unusual vapor permeation properties of PTMSP result from its very high free volume - more than 20% of the total volume of the material. The free volume elements appear to be connected, forming the equivalent of a finely microporous material. The large amount of condensable organic vapor sorbed into this finely porous structure causes partial blocking of the small free-volume elements, reducing the permeabilities of the noncondensable permanent gases from their pure gas values.  相似文献   

19.
Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4‐methyl‐2‐pentyne) (PMP), and polymers with intrinsic microporosity (PIM‐1) reduces gas permeabilities and limits their application as gas‐separation membranes. While super glassy polymers are initially very porous, and ultra‐permeable, they quickly pack into a denser phase becoming less porous and permeable. This age‐old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.  相似文献   

20.
The current work utilizes three separate techniques to study the physical aging process in amorphous poly(ethylene furanoate) (PEF), which is a recently introduced engineering thermoplastic with enhanced properties compared to petroleum‐sourced poly(ethylene terephthalate). Differential scanning calorimetry aging experiments were conducted at multiple aging temperatures and times, and the resultant enthalpic recovery values compared to the theoretical maximum enthalpy loss evaluated from calculations involving extrapolation of the equilibrium liquid line. Density measurements reveal densification of the matrix for the aged versus unaged samples, and provide an estimate for the reduction in free volume for the aged samples. Complementary oxygen permeation and pressure‐decay sorption experiments provide independent verification of the free volume reduction mechanism for physical aging in glassy polymers. The current work provides the first detailed aging study for PEF. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 389–399  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号