首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The microstructure of conjugated polymers film is strongly dependent on factors such as the conformation and the film formation processing. In this article, we show how to induce more planarization conformation of conjugated polymer backbone during film formation processing and finally leading to the fibrils formation of the cast film. The conjugated polymer we used is poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo[3,4‐c]pyrrole‐1,4‐diyl]‐alt–[[2,2′‐(2,5‐thiophene)bis‐thieno[3,2‐b]thiophen]‐5,5′‐diyl]] (PDPPTT‐T). The main solvent is chloroform (CF), the aliphatic 1,8‐diiodooctane (DIO) is used as the additives, which has similar solubility parameter to the conjugated polymer side chain, is a bad solvent to the conjugated backbone and has a lower volatility than CF. Thus, during the film formation, chloroform was evaporated faster than the additive. After the chloroform evaporated completely, the side chain was still dissolved in the additive, which decreases the steric hindrance and improves planarization conformation of the conjugated backbone of PDPPTT‐T. Films processed using the aliphatic additives have fibrillar morphology while films cast from the CF solvent were featureless. TEM images reveal that the fibrils were about 30 nm in width and several hundred nanometers in length. The backbones of PDPPTT‐T were parallel to the long axis of fibrils. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1079–1086  相似文献   

2.
N‐Nitramino/N‐oxyl functionalization strategies were employed to investigate structure–property relationships of energetic materials. Based on single‐crystal diffraction data, π–π stacking of pyrazole backbones can be tailored effectively by energetic functionalities, thereby resulting in diversified energetic compounds. Among them, hydroxylammonium 4‐amino‐3,5‐dinitro‐1H‐pyrazol‐1‐olate and dipotassium N,N′‐(3,5‐dinitro‐1H‐pyrazol‐1,4‐diyl)dinitramidate, with unique face‐to‐face π–π stacking, can be potentially used as a high‐performance explosive and an energetic oxidizer, respectively.  相似文献   

3.
A novel ladder‐type donor pyran‐bridged indacenodithiophene (IDTP) is developed by introducing two oxygen atoms into indacenodithiophene unit. IDTP possesses a twisted backbone and leads to facially asymmetric arrangement of side chains, resulting in enhanced local π–π stacking of according polymer poly[(5,5,11,11‐tetrakis(4‐octylphenyl)‐5,11‐dihydrothieno[2′,3′:5,6]pyrano[3,4‐g]thieno[3,2‐c]isochromene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT, which shows extended absorption range. Moreover, oxygen atoms render deeper highest occupied molecular orbital (HOMO) levels of poly[indacenodithiophene‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT compared with PIDT‐FBT, therefore bringing a higher open‐circuit voltage (V oc).  相似文献   

4.
The peptide N‐benzyloxycarbonyl‐L‐valyl‐L‐tyrosine methyl ester or NCbz‐Val‐Tyr‐OMe (where NCbz is N‐benzyloxycarbonyl and OMe indicates the methyl ester), C23H28N2O6, has an extended backbone conformation. The aromatic rings of the Tyr residue and the NCbz group are involved in various attractive intra‐ and intermolecular aromatic π–π interactions which stabilize the conformation and packing in the crystal structure, in addition to N—H...O and O—H...O hydrogen bonds. The aromatic π–π interactions include parallel‐displaced, perpendicular T‐shaped, perpendicular L‐shaped and inclined orientations.  相似文献   

5.
The title compound, [MnCl2(C24H20N6)], has been synthesized and characterized based on the multifunctional ligand 2,5‐bis(2,2′‐bipyridyl‐6‐yl)‐3,4‐diazahexa‐2,4‐diene (L). The MnII centre is five‐coordinate with an approximately square‐pyramidal geometry. The L ligand acts as a tridendate chelating ligand. The mononuclear molecules are bridged into a one‐dimensional chain by two C—H...Cl hydrogen bonds. These chains are assembled into a two‐dimensional layer through π–π stacking interactions between adjacent uncoordinated bipyridyl groups. Furthermore, a three‐dimensional supramolecular framework is attained through π–π stacking interactions between adjacent coordinated bipyridyl groups.  相似文献   

6.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

7.
Organic–inorganic hybrid gels containing Si‐vinylene units have been synthesized by a hydrosilylation reaction of tri‐ or tetra‐ethynyl aryl compounds, 1,3,5‐triethynylbenzene (TEB), 3,3′,5,5′‐tetraethynylbiphenyl (TEBP), or tetrakis(4‐ethynylphenyl)methane (TEPM), and bisdimethylsilyl compounds, 1,1,3,3‐tetramethyldisiloxane (TMDS) or 1,4‐bisdimetylsilylbenzene (BDMSB), in toluene. Network structure of the resulting gels was quantitatively characterized by a scanning microscopic light scattering. The reactions yielded the gels having homogeneous network structure of 1.5–2.9 nm mesh size under the monomer concentrations that were relatively higher than the critical gelation concentration. The gels obtained from TEB showed broad absorption in the range from 340 to 370 nm, and emission in the range from 440 to 490 nm. The TEB–BDMSB gels showed remarkable red shift of the emission in comparison with that of the corresponding reaction solutions derived from the network formed by σ–π conjugation. The TEPM–TMDS, BDMSB gels exited by 280 nm showed not only the emission peak at around 360 nm derived from TEPM, but the broad peak at around 420 nm, which should be derived from interaction between phenyl groups of TEPM in the gels. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1360–1368  相似文献   

8.
Alternating π‐conjugated copolymers of 1,8‐naphthyridine‐2,6‐diyl ( 1,8‐Nap ) with 9,9‐dioctylfluorene‐2,7‐diyl ( P(Flu‐Ph‐1,8‐Nap) ) and 2,5‐didodecyloxy‐1,4‐phenylene ( P(ROPh‐Ph‐1,8‐Nap) ) have been synthesized by Pd‐catalyzed organometallic polycondensation. The copolymers showed UV‐vis absorption peaks at around 390 nm in o‐dichlorobenzene. The polymers were photoluminescent both in o‐dichlorobenzene and in the solid state. In o‐dichlorobenzene, the emission peaks of P(Flu‐Ph‐1,8‐Nap) and P(ROPh‐Ph‐1.,8‐Nap) appeared at λEM = 440 and 471 nm, with quantum yields of 87% and 66%, respectively. Electrochemical data revealed that 1,8‐Nap behaved as a typical electron‐accepting unit. When P(Flu‐Ph‐1,8‐Nap) was treated with 10‐camphorsulfonic acid, the emission peak shifted to λEM = 598 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

10.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

11.
The single crystal X‐ray analysis data of the new hepta‐coordinate cadmium(II) complex of N,N‐dimethyl‐N‐(4‐pyridyl)amine (DMPA), [Cd(DMPA)3(NO2)2]·0.5H2O, shows that the coordination environment around the CdII is pentagonal bipyramidal. Furthermore, self‐assembly of this complex as molecular squares that interlink via π–π stacking interactions is observed. This network contains voids that are filled by water molecules.  相似文献   

12.
Pyrene‐bridged boron subphthalocyanine dimers were synthesized from a mixed‐condensation reaction of 2,7‐di‐tert‐butyl‐4,5,9,10‐tetracyanopyrene and tetrafluorophthalonitrile, and their syn and anti isomers arising from the result of connecting two bowl‐shaped boron subphthalocyanine molecules were successfully separated. Expansion of the conjugated system of boron subphthalocyanine through a pyrene bridge caused a redshift of the Q band absorption relative to the parent pyrene‐fused monomer, whereas combining the curved π‐conjugation of boron subphthalocyanine with the planar π‐conjugation of pyrene enabled facile embracement of C60 molecules, owing to the enhanced concave–convex π–π stacking interactions.  相似文献   

13.
Porphyrins are valuable constituents in optoelectronic, catalytic, and other applications, yet control of intermolecular π–π stacking is invariably essential to attain the desired properties. Superstructures built onto the porphyrin, often via meso‐aryl groups, can afford facial encumbrance that suppresses π–π stacking, although some molecular designs have provided insufficient facial coverage and many have entailed cumbersome syntheses. In this study, a copper(II) porphyrin bearing four meso substituents, namely, {10,20‐bis[2,6‐bis(octyloxy)phenyl]‐5,15‐dibromoporphinato}copper(II), [Cu(C64H82Br2N4O4)], was prepared by metalation of the corresponding free‐base porphyrin and was characterized by single‐crystal X‐ray diffraction. The crystal structure reveals a dihedral angle of 111.1 (2)° for the plane of the meso‐aryl group relative to the plane of the porphyrin, with both aryl groups tilted in the same direction. Each of the four octyloxy groups exhibits a gauche conformation for the –OCH2CH2– unit but is extended with four or five anti (–CH2CH2–/H) conformations thereafter, causing each octyl group to span the dimension of the macrocycle. In a global frame of reference where the two Br atoms define the north/south poles and the two aryl groups are at antipodes on the equator, two octyl groups of one aryl unit project over the northern hemisphere (covering pyrroles A and B), whereas those of the other aryl unit project over the southern hemisphere (covering pyrroles C and D). Together, the four octyl groups ensheath the two faces of the porphyrin in a self‐wrapped assembly. The closest approach of the Cu atom to an octyl methylene C atom (position 6) is 3.5817 (18) Å, the mean separations of neighboring porphyrin planes are 8.059 (4) and 4.693 (8) Å along the a and c axes, respectively, and the center‐to‐center distances between the Cu atoms of neighboring porphyrins are 10.2725 (4), 12.2540 (6), and 12.7472 (6) Å along the a, b, and c axes, respectively. The Hirshfeld surface analysis and two‐dimensional (2D) fingerprint plots provide information concerning contact interactions in the supramolecular assembly of the solid crystal.  相似文献   

14.
The π–π interactions between CO2 and three aromatic molecules, namely benzene (C6H6), pyridine (C5H5N), and pyrrole (C4H5N), which represent common functional groups in metal‐organic/zeoliticimidazolate framework materials, were characterized using high‐level ab initio methods. The coupled‐cluster with single and double excitations and perturbative treatment of triple excitations (CCSD(T)) method with a complete basis set (CBS) was used to calibrate Hartree–Fock, density functional theory, and second‐order M?ller–Plesset (MP2) with resolution of the identity approximation calculations. Results at the MP2/def2‐QZVPP level showed the smallest deviations (only about 1 kJ/mol) compared with those at the CCSD(T)/CBS level of theory. The strength of π–π binding energies (BEs) followed the order C4H5N > C6H6 ~ C5H5N and was roughly correlated with the aromaticity and the charge transfer between CO2 and aromatic molecule in clusters. Compared with hydrogen‐bond or electron donor–acceptor interactions observed during BE calculations at the MP2/def2‐QZVPP level of theory, π–π interactions significantly contribute to the total interactions between CO2 and aromatic molecules. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Strong aggregation‐caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C?C at the bay positions to obtain aggregation‐induced enhanced emission (AIEE) of a perylene derivative ( Cya‐PDI ) with a large π‐conjugation system. Cya‐PDI is weakly luminescent in the well‐dispersed CH3CN or THF solutions and exhibits an evident time‐dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya‐PDI molecules changed from plate‐shaped to rod‐like aggregates under the co‐effects of time and water. An edge‐to‐face arrangement of aggregation was proposed and discussed. The fact that the Cya‐PDI aggregates show a broad absorption covering the whole visible‐light range and strong intermolecular interaction through π–π stacking in the solid state makes them promising materials for optoelectric applications.  相似文献   

16.
Dioxobis(pyridine‐2‐thiolate‐N, S)molybdenum(VI) (MoO2(Py‐S)2), reacts with of 4‐methylpyridine (4‐MePy) in acetonitrile, by slow diffusion, to afford the title compound. This has been characterized by elemental analysis, IR and 1H NMR spectroscopy. The X‐ray single crystal structure of the complex is described. Structural studies reveal that the molecular structure consists of a β‐Mo8O26 polyanion with eight MoO6 distorted edge‐shared octahedra with short terminal Mo–O bonds (1.692–1.714 Å), bonds of intermediate length (1.887–1.999 Å) and long bonds (2.150–2.473 Å). Two different types of hydrogen bonds have been found: N–H···O (2.800–3.075 Å) and C–H···O (3.095–3.316 Å). The presence of π–π stacking interactions and strong hydrogen bonds are presumably responsible for the special disposition of the pyridinic rings around the polyanion cluster.  相似文献   

17.
A synthetic method to obtain an arsole‐containing π‐conjugated polymer by the post‐transformation of the organotitanium polymer titanacyclopentadiene‐2,5‐diyl unit with an arsenic‐containing building block is described. The UV/Vis absorption maximum and onset of the polymer were observed at 517 nm and 612 nm, respectively. The polymer exhibits orange photoluminescence with an emission maximum (Emax) of 600 nm and the quantum yield (Φ) of 0.05. The polymer proved to exhibit a quasi‐reversible redox behavior in its cyclic voltammetric (CV) analysis. The energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were estimated to be ?5.43 and ?3.24 eV, respectively, from the onsets for oxidation and reduction signals in the CV analysis. Further chemical modification of the arsole unit in the π‐conjugated polymer by complexation of gold(I) chloride occurred smoothly resulting in the bathochromic shift of the UV/Vis absorption and lowering of the LUMO energy level.  相似文献   

18.
The supramolecular chemistry of coordination compounds has become an important research domain of modern inorganic chemistry. Herein, six isostructural group IIB coordination compounds containing a 2‐{[(2‐methoxyphenyl)imino]methyl}phenol ligand, namely dichloridobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)zinc(II), [ZnCl2(C28H26N2O4)], 1 , diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)zinc(II), [ZnI2(C28H26N2O4)], 2 , dibromidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)cadmium(II), [CdBr2(C28H26N2O4)], 3 , diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)cadmium(II), [CdI2(C28H26N2O4)], 4 , dichloridobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)mercury(II), [HgCl2(C28H26N2O4)], 5 , and diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)mercury(II), [HgI2(C28H26N2O4)], 6 , were synthesized and characterized by X‐ray crystallography and spectroscopic techniques. All six compounds exhibit an infinite one‐dimensional ladder in the solid state governed by the formation of hydrogen‐bonding and π–π stacking interactions. The crystal structures of these compounds were studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06‐2X/def2‐TZVP calculations and Bader's theory of `atoms in molecules'. The energies associated with the interactions, including the contribution of the different forces, have been evaluated. In general, the π–π stacking interactions are stronger than those reported for conventional π–π complexes, which is attributed to the influence of the metal coordination, which is stronger for Zn than either Cd or Hg. The results reported herein might be useful for understanding the solid‐state architecture of metal‐containing materials that contain MIIX2 subunits and aromatic organic ligands.  相似文献   

19.
Three compounds with phenyl and pentafluorophenyl rings bridged by (CH2)3 and (CH2)2SiMe2 units were synthesized by hydrosilylation and C−C coupling reactions. Their solid‐state structures are dominated by intermolecular π stacking interactions, primarily leading to dimeric or chain‐type aggregates. Analysis of free molecules in the gas phase by electron diffraction revealed the most abundant conformer to be significantly stabilized by intramolecular π–π interactions. For the silicon compounds, structures characterized by σ–π interactions between methyl and pentafluorophenyl groups are second lowest in energy and cannot be excluded completely by the gas electron diffraction experiments. C6H5(CH2)3C6F5, in contrast, is present as a single conformer. The gas‐phase structures served as a reference for the evaluation of a series of (dispersion‐corrected) quantum‐chemical calculations.  相似文献   

20.
Sulfonated poly(ether ether ketone) (SPEEK) thin film performs reversible thermochromic property by developing the color to be yellowish at the temperature above 190 °C. The detailed analyses based on temperature‐dependent techniques suggest the thermal treatment inducing the shifting of the hydrogen bond network between the sulfonated group and the hydrated water molecules to the π–π stacking among aromatic rings in SPEEK chains. Although it is general that the polymer chain packing is unfavorable at high temperature, the present work shows a good example that when the polymer chains can form specific molecular interaction, such as π–π stacking, even in harsh thermal treatment, a rearrangement will effectively occur, which leads to an external stimuli‐responsive property.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号