首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

2.
Thermo‐responsive block copolymers based on poly(N‐vinylcaprolactam) (PNVCL) have been prepared by cobalt‐mediated radical polymerization (CMRP) for the first time. The homopolymerization of NVCL was controlled by bis(acetylacetonato)cobalt(II) and a molecular weight as high as 46,000 g/mol could be reached with a low polydispersity. The polymerization of NVCL was also initiated from a poly(vinyl acetate)‐Co(acac)2 (PVAc‐Co(acac)2) macroinitiator to yield well‐defined PVAc‐b‐PNVCL block copolymers with a low polydispersity (Mw/Mn = 1.1) up to high molecular weights (Mn = 87,000 g/mol), which constitutes a significant improvement over other techniques. The amphiphilic PVAc‐b‐PNVCL copolymers were hydrolyzed into unprecedented double hydrophilic poly(vinyl alcohol)‐b‐PNVCL (PVOH‐b‐PNVCL) copolymers and their temperature‐dependent solution behavior was studied by turbidimetry and dynamic light scattering. Finally, the so‐called cobalt‐mediated radical coupling (CMRC) reaction was implemented to PVAc‐b‐PNVCL‐Co(acac)2 precursors to yield novel PVAc‐b‐PNVCL‐b‐PVAc symmetrical triblock copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Star‐shaped poly(L ‐lactide)s (PLAs) bearing variable numbers of secondary hydroxyl groups at linear arms chain‐ends and primary hydroxyl groups directly attached to dipentaerithritol core (DPE) ((HO)6?xDPE(PLA‐OH)x, where x = 1–6) were prepared and then analyzed by means of size exclusion chromatography (SEC), 1H NMR spectroscopy, MALDI‐TOF mass spectrometry, and eventually by Liquid Chromatography at Critical Conditions (LC‐CC). First, starting from DPE(OH)6 a series of polyols with various number of hydroxyl groups has been obtained ((BnO)6?xDPE(OH)x, where Bn denotes benzyl moiety and x = 1–6). The living ring‐opening polymerization of L ‐lactide (LA) with (BnO)6?xDPE(OH)x/tin(II) octoate mixtures as initiating and catalytic system led to star‐shaped (BnO)6?xDPE(PLA‐OH)x polymers with molar masses (Mn) controlled by LA and DPE concentrations ratio in the feed. Finally, deprotection (via hydrogenation) gave a series of (HO)6?xDPE(PLA‐OH)x PLA's. SEC (with Multiangle Laser Light Scattering Detector (MALLS)), NMR, and MALDI‐TOF analyses confirmed the assumed structures and Mn's of the prepared (BnO)6?xDPE(PLA‐OH)x and (HO)6?xDPE(PLA‐OH)x PLA's. LC‐CC measurements revealed that for (BnO)6?xDPE (PLA‐OH)x series the elution volumes increase monotonically with the increasing number of –PLA‐OH arms in one macromolecule and are independent on the given PLA molar mass because of the critical conditions. Contrary to the polymers having the protected core hydroxyl groups, the elution volume for (HO)6?xDPE(PLA‐OH)x series decreases with the increasing number of ‐PLA‐OH arms reaching a minimum value for 4‐arm PLA and then slightly increases for 5‐ and 6‐arm PLA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6116–6133, 2005  相似文献   

4.
Tetrafunctional porphyrins‐containing trithiocarbonate groups were synthesized by an ordinary esterification method. This tetrafunctional porphyrin (TPP‐CTA) could be used as a chain transfer agent in a controlled reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to prepare well‐defined 4‐arm star‐shaped polymers. N,N‐Diethylacrylamide was polymerized using TPP‐CTA in 1,4‐dioxane. Poly(N,N‐diethylacrylamide) (PDEA) is known to be a thermo‐responsive polymer, and exhibits a lower critical solution temperature (LCST) in water. The star‐shaped PDEA polymer (TPP‐PDEA) was therefore also thermo‐responsive, as expected. The LCST of this polymer depended on its concentration in water, as confirmed by turbidity, dynamic light scattering (DLS), static light scattering (SLS), and 1H NMR measurements. The porphyrin cores were compartmentalized in PDEA shells in aqueous media. Below the LCST, the fluorescence intensity of TPP‐PDEA was about six times larger than that of a water‐soluble low molecular weight porphyrin compound (TSPP), whose fluorescence intensity was independent of temperature. Above the LCST, the fluorescence intensity of TPP‐PDEA decreased, while the intensity was about three times higher than that of TSPP. These observations suggested that interpolymer aggregation occurred due to the hydrophobic interactions of the dehydrated PDEA arm chains above the LCST, with self‐quenching of the porphyrin moieties arising from these interactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

5.
Well‐defined star‐shaped hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) amphiphilic conetworks (APCNs) have been synthesized via the combination of ring opening polymerization (ROP) and click chemistry. Alkyne‐terminated six arm star‐shaped PCL (6‐s‐PCLx‐C?CH) and azido‐terminated PEG (N3‐PEG‐N3) are characterized by 1H NMR and FT‐IR. The swelling degree of the APCNs is determined both in water and organic solvent. This unique property of the conetworks is dependent on the nanophase separation of hydrophilic and hydrophobic phases. The morphology and thermal behaviors of the APCNs are investigated by SEM and DSC respectively. The biocompatibility is determined by water soluble tetrazolium salt reagents (WST‐1) assay, which shows the new polymer networks had good biocompatibility. Through in vitro release of paclitaxel (PTX) and doxorubicin (DOX), the APCNs is confirmed to be promising drug depot materials for sustained hydrophobic and hydrophilic drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 407–417  相似文献   

6.
A novel star‐shaped poly(p‐dioxanone) was synthesized by the ring‐opening polymerization of p‐dioxanone initiated by pentaerythritol with stannous octoate as a catalyst in bulk. The effect of the molar ratio of the monomer to the initiator on the polymerization was studied. The polymers were characterized with 1H NMR and 13C NMR spectroscopy. The thermal properties of the polymers were investigated with differential scanning calorimetry and thermogravimetric analysis. The novel star‐shaped poly(p‐dioxanone) has a potential use in biomedical materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1245–1251, 2006  相似文献   

7.
A series of well‐defined ABC 3‐Miktoarm star‐shaped terpolymers [Poly(styrene)‐Poly(ethylene oxide)‐Poly(ε‐caprolactone)](PS‐PEO‐PCL) with different molecular weight was synthesized by combination of the “living” anionic polymerization with the ring‐opening polymerization (ROP) using macro‐initiator strategy. Firstly, the “living” poly(styryl)lithium (PS?Li+) species were capped by 1‐ethoxyethyl glycidyl ether(EEGE) quantitatively and the PS‐EEGE with an active and an ethoxyethyl‐protected hydroxyl group at the same end was obtained. Then, using PS‐EEGE and diphenylmethylpotassium (DPMK) as coinitiator, the diblock copolymers of (PS‐b‐PEO)p with the ethoxyethyl‐protected hydroxyl group at the junction point were achieved by the ROP of EO and the subsequent termination with bromoethane. The diblock copolymers of (PS‐b‐PEO)d with the active hydroxyl group at the junction point were recovered via the cleavage of ethoxyethyl group on (PS‐b‐PEO)p by acidolysis and saponification successively. Finally, the copolymers (PS‐b‐PEO)d served as the macro‐initiator for ROP of ε‐CL in the presence of tin(II)‐bis(2‐ethylhexanoate)(Sn(Oct)2) and the star(PS‐PEO‐PCL) terpolymers were obtained. The target terpolymers and the intermediates were well characterized by 1H‐NMR, MALDI‐TOF MS, FTIR, and SEC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1136–1150, 2008  相似文献   

8.
The first‐ and second‐generation well‐defined thermoresponsive amphiphilic linear–dendritic diblock copolymers based on hydrophilic linear poly(N‐vinylcaprolactam) and hydrophobic dendritic aromatic polyamide have been synthesized via reversible addition fragmentation chain transfer polymerization of N‐vinylcaprolactam by employing dendritic chain‐transfer agents possessing a single dithiocarbamate moiety at the focal point. These linear–dendritic copolymers exhibit reversible temperature‐dependent phase transition behaviors in aqueous solution as characterized by turbidity measurements using UV–vis spectroscopy. Their lower critical solution temperatures depend on the generation of the dendritic aromatic polyamides and the concentrations of the copolymer solutions. These amphiphilic copolymers are able to form nanospherical micelles in the aqueous solution as revealed by fluorescent spectroscopy, dynamic light scattering, and transmission electron microscope (TEM). The core–shell structure of micelles has been proved by 1H NMR analyses of the micelles in D2O. The micelles loaded with indomethacin as a model drug showed high‐drug loading capacity and thermoresponsive drug release behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3240–3250  相似文献   

9.
The N‐(trimethylsilyl)bis(trifluoromethanesulfonyl)imide‐catalyzed (Me3SiNTf2‐catalyzed) group transfer polymerization (GTP) of methyl methacrylate (MMA) has been studied for synthesizing stereospecific star‐shaped poly(methyl methacrylate)s (PMMAs). The catalytic property of Me3SiNTf2 for the GTP of MMA using 1‐methoxy‐1‐trimethylsilyloxy‐2‐methyl‐propene as the initiator was confirmed by a kinetic investigation and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry measurement. The initiating efficiency (f) of Me3SiNTf2 was 0.94–1.00, which was estimated by the value of Mn(calcd)/Mn(SEC). The Me3SiNTf2‐catalyzed GTP of MMA was carried out using initiators possessing three, four, and six MTS groups (MTS3, MTS4, and MTS6, respectively) under the condition of [MMA]0/[MTS3, MTS4, or MTS6]0 = 120 at ?55 °C. All the obtained PMMAs exhibited unimodal and narrow molecular weight distributions as Mw/Mns = 1.03–1.04 and the Mw(MALS)s of the 3‐, 4‐, and 6‐armed star‐shaped PMMAs (PMMA3, PMMA4, and PMMA6, respectively) were 12.9, 12.9, and 13.4 kgmol?1, respectively, which fairly agreed with the calculated Mw(calcd) values. The syndiotacticities, rrs, of PMMA3, PMMA4, and PMMA6 were in the range of 87–89%. The stereoblock synthesis of PMMA3, PMMA4, and PMMA6 was performed by the first and second polymerizations at ?55 and 45 °C; the rrs of the first and second PMMA blocks were 87.0, 87.0, and 86.0% and 65.0, 65.0, and 64.0%, respectively. The glass transition temperatures (Tgs) were 118.1, 115.8, and 111.5 °C for the respective syndiotactic‐rich PMMA3, PMMA4, and PMMA6 and 111.5, 109.7, and 107.6 °C for the respective stereoblock ones. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

11.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

12.
In this study, a novel thermo‐sensitive poly(N‐acryloylglycinates) was prepared in order to get a potential drug release carrier. The corresponding monomers and the polymers were characterized with Fourier‐transform infrared (FTIR) and 1H NMR. The thermo‐sensitivity of the poly(N‐acryloylglycinates) was evaluated by measuring their lower critical solution temperatures (LCST) in water, inorganic salt solution, and different pH solutions. The results indicated that poly(N‐acryloylglycine methyl ester) (NAGME) and poly(N‐acryloylglycine ethyl ester) (NAGEE) exhibit a reversible thermo‐sensibility in their aqueous solutions at 61.5 and 12.5°C, respectively. However, no thermo‐sensitive behavior of poly(N‐acryloylglycine propyl ester) (NAGPE) was found due to its over hydrophobicity. The swelling studies on hydrogels were carried out at different temperatures, in different pH, and inorganic salt solutions. The hydrogels showed a remarkable phase transition at about 35°C with changing temperature. The release rate of caffeine from the thermo‐sensitive hydrogel was apparently decreased as the crosslinker content increased and temperature decreased. Seventy five percent caffeine from the polymeric hydrogel with 5% NMBA (N, N‐methylenebis(acrylamide)) was released at room temperature within 240 min, whereas 95.4% caffeine diffused into the medium at 37°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

14.
The synthesis of hybrid star‐shaped polymers was carried out by atom transfer radical polymerization of n‐butyl acrylate from a well‐defined multifunctional titanium‐oxo‐cluster initiator. Conditions were identified to prevent possible side reactions among monomer, polymer, and the titanium‐oxo‐cluster ligands. Polymerizations provided linear first‐order kinetics and the evolution of the experimental molecular weight is also linear with the conversion. 1H DOSY NMR and cleavage of the polymeric branches from the multifunctional initiator by hydrolysis were used to (i) prove the star‐shaped structure of the polymer, and (ii) demonstrate that the shoulder observed on size exclusion chromatograms is not due to a noncontrolled polymerization but to ungrafting of polymeric branches during analysis. Rheological properties of the hybrid star‐shaped poly(n‐butyl acrylate) were studied in the linear regime and show that the Ti‐oxo‐cluster not only increases significantly the viscosity of the polymer relative to its ungrafted arm but has a rheological signature which is qualitatively different from that of stars with organic cores suggesting that the Ti cluster reduces significantly the molecular mobility of the star. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The copper (I)‐catalyzed azide‐alkyne cycloaddition “click” reaction was successfully applied to prepare well‐defined 3, 6, and 12‐arms polystyrene and polyethylene glycol stars. This study focused particularly on making “perfect” star polymers with an exact number of arms, as well as developing techniques for their purification. Various methods of characterization confirmed the star polymers high purity, and the structural uniformity of the generated star polymers. In particular, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry revealed the quantitative transformation of the end groups on the linear polymer precursors and confirmed their quantitative coupling to the dendritic cores to yield star polymers with an exact number of arms. In addition to preparing well‐defined polystyrene and poly(ethylene glycol)homopolymer stars, this technique was also successfully applied to amphiphilic, PCL‐b‐PEG star polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Novel types of dual‐functional surface‐attached polymer brushes were developed by interface‐mediated reversible addition‐fragmentation chain transfer (RAFT) polymerization of 6‐azidohexylmethacrylate using the surface‐immobilized RAFT agent and the free initiator. The interface‐mediated RAFT polymerization produced silicon substrate coated with dual‐functional (azido groups from monomer and carboxylic acid groups from RAFT agent) poly(6‐azidohexylmethacrylate) [poly (AHMA)] with a grafting density as high as 0.59 chains/nm2. Dual‐functional polymer brushes can represent an attractive chemical platform to deliberately introduce other molecular units at specific sites. The azido groups of the poly(AHMA) brushes can be modified with alkyl groups via click reaction, known for their DNA hybridization, while the carboxylic acid end groups can be reacted with amine groups via amide reaction, known for their antifouling properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1696–1706  相似文献   

17.
A monomode microwave reactor was used for the synthesis of designed star‐shaped polymers, which were based on dipentaerythritol with six crystallizable arms of poly(ε‐caprolactone)‐b‐poly(L ‐lactide) (PCL‐b‐PLLA) copolymer via a two‐step ring‐opening polymerization (ROP). The effects of irradiation conditions on the molecular weight were studied. Microwave heating accelerated the ROP of CL and LLA, compared with the conventional heating method. The resultant hexa‐armed polymers were fully characterized by means of FTIR, 1H NMR spectrum, and GPC. The investigation of thermal properties and crystalline behaviors indicated that the crystalline behaviors of polymers were largely depended on the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Linear telechelic, α,ω‐ditelechelic, and star‐shaped tri‐, tetra‐, penta‐, and hexa‐arm poly(L ‐lactide)s (PLAs) fitted at every arm with pyrene end group have been prepared. Internal dynamics and mobility of the PLA chains in tetrahydrofuran solution at 25 °C, with regard to the number of PLA arms in one macromolecule and the individual arm average degree of polymerization, was followed by fluorescence spectroscopy. Analysis of both static and time‐resolved spectra of the star‐shaped polymers revealed dynamic segmental motion resulting in end‐to‐end cyclization, accompanied by an excimer formation. Probability and rate of the latter reaction increased with increasing number of arms and with decreasing their polymerization degree. Moreover, time‐resolved measurements revealed that for macromolecules containing few arms (2 or 3) the pyrene moieties are located in the interior of the star‐shaped PLAs, whereas in the instance of the higher number of arms (4–6) they are located at the periphery of the star‐shaped PLAs. Thus, increasing the number of arms leads to their stretching away from the center of the star‐shaped PLA macromolecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4586–4599, 2005  相似文献   

19.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

20.
Amphiphilic tris(2,2′‐bipyridine)ruthenium‐cored star‐shaped polymers consisting of one polystyrene block and two poly(N‐isopropylacrylamide) blocks were prepared by the “arm‐first” method in which RAFT polymerization and nonconvalent ligand–metal complexation were employed. The prepared amphiphilic star‐shaped metallopolymers are able to form micelles in water. The size and distribution of the micelles were studied by dynamic light scattering and transmission electron microscopy techniques. Preliminary studies indicate that the polymer concentration and the hydrophilic poly(N‐isopropylacrylamide) block length can affect the morphologies of the formed metal‐interfaced core–shell micelles in water. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4204–4210, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号