首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the DE hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003  相似文献   

2.
This article describes a combined experimental and theoretical study on nanophase structure development as a result of liquid phase demixing in solution‐cast blends of the organic semiconductor poly(9,9′‐dioctyl fluorene) (PFO) and the ferroelectric polymer poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)). Blend layers (200 nm) are prepared by spin coating a 1:9 (w/w) PFO:P(VDF‐TrFE) blend solution in a common solvent on a poly(ethylenedioxy thiophene)/poly(styrene sulfonate) substrate. Owing to the pronounced incompatibility between the two polymers, a strong phase‐separated morphology is obtained, characterized by disk‐like nanodomains of PFO embedded in a P(VDF‐TrFE) matrix, as revealed by scanning electron microscopy. By varying the processing conditions, we find the average domain size and standard deviation to increase with spinning time. The considerable increase in domain size suggests the coarsening process not to be impeded by a steep rise in viscosity. This indicates solvent evaporation to be only moderate within the experimental time frame. The evolution of the observed phase morphology is modeled using ternary diffuse interface theory integrated with a modified Flory–Huggins (FH) treatment of the homogeneous (bulk) free energy of mixing, to account for significant molecular differences between the active blend components. Using calculated FH interaction parameters, the model confirms the phase separation to occur via spinodal decomposition of the blend solution during spin coating, as suggested by experimental observations. The simulated phase morphologies as well as the modeled trends in domain growth and standard deviation compare favorably with the experimental data. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1255–1262, 2011  相似文献   

3.
The blending between poly(methyl methacrylate) (PMMA) and ferroelectric (vinylidene fluoride‐trifluorethylene) [P(VDF‐TrFE)] copolymer chains has been investigated by Fourier transform infrared (FTIR) spectroscopy over the full range of composition, for the copolymer with 50 mol % of trifluorethylene [TrFE]. The FTIR spectra revealed an absorption band at 1643 cm−1, characteristic of the blend and absent in the individual constituents. We attributed this band to the interaction of the carbonyl group of the PMMA side chains with the disordered helical chains present in the amorphous region of the P(VDF‐TrFE). We investigated the consequences of adding PMMA onto the formation of the all trans conformation of the copolymer chains and we demonstrated that the effects of thermal heating on the spectra are relevant only for the samples where the ferroelectric semicrystalline phase is present. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 34–40, 2000  相似文献   

4.
In this work, we report evidences of cocrystallization in ternary blends made of crystalline ferroelectric poly(vinylidene fluoride‐trifluorethylene) [P(VDF‐TrFE)] copolymers. Complete cocrystallization has been unequivocally demonstrated by the observation of just one Curie and one Melting temperature in their calorimetric thermograms. These temperatures were intermediary among the respective temperatures of the individual constituents, that is, P(VDF‐TrFE)72/28, P(VDF‐TrFE)63/37, and P(VDF‐TrFE)50/50. Dielectric and X ray diffraction data were used to complement the investigation. The binary blends made of 63/37 and 72/28 copolymers were found to be miscible in the entire range of composition, with the behavior of their Curie temperatures being well fitted by an equation very similar to that proposed by Gordon‐Taylor to describe the behavior of the glass transition temperatures in true binary blends. In the ternary crystalline system, we have found evidences that the complete miscibility of the binary blend made of 63/37 and 72/28 copolymers actually drives the P(VDF‐TrFE)50/50 copolymer to accommodate their chains in its binary crystalline structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 621–626, 2010  相似文献   

5.
An amphiphilic comb polymer consisting of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) [P(VDF‐co‐CTFE)] main chains and poly(oxyethylene methacrylate) (POEM) side chains was synthesized using direct initiation of the chlorine atoms in CTFE units through atom transfer radical polymerization, as confirmed by 1H NMR and FTIR spectroscopy. The P(VDF‐co‐CTFE)‐g‐POEM comb polymer was introduced as an additive to prepare poly(vinylidene fluoride) antifouling ultrafiltration membranes. As the contents of comb polymer increased, the mechanical properties of membranes slightly decreased due to the decreased crystallinity of the membranes, as revealed by universal testing machine and X‐ray diffraction. However, water contact angle measurement and X‐ray photoelectron spectroscopy showed that the hydrophilic POEM segments spontaneously segregated on the membrane surfaces. As a result, the antifouling property of the membranes containing P(VDF‐co‐CTFE)‐g‐POEM comb polymer was considerably improved with a slight change of water flux. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 183–189, 2010  相似文献   

6.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride‐trifluoroethylene) P(VDF‐TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 × 10?24 cm3/atom for PVDF and 2.5 × 10?24 cm3/atom for P(VDF‐TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF‐TrFE) was observed. A lightly cross‐linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross‐linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDF‐TrFE) compared with PVDF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2503–2513, 2005  相似文献   

8.
A nanocomposite with enhanced dielectric response is developed using poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)] as matrix and Chemically modified high dielectric constant organic semiconductor—copper phthalocyanine oligomer (CuPc)—as filler. Transmission electron microscope (TEM)‐observed morphologies reveal that in the nanocomposite the average size of CuPc particles is about 25 nm [1/24 of that of CuPc in physical blend of P(VDF‐TrFE) and CuPc]. The hot‐press nanocomposite film with 15 wt % CuPc can realize a dielectric constant of 540 at 100 Hz. The enhanced dielectric response in the nanocomposite demonstrates the significance of the interface effect in raising the material responses far beyond that expected by simple mixing rules when there is a large dielectric contrast between the polymer matrix and the dielectric filler in the composite. It is also interesting to note that at high frequencies (such as 100 MHz) the nanocomposite has a dielectric constant of ~100 and this value is comparable to those of current materials used in microwave applications. At 105 °C that is near the ferroelectric‐to‐paraelectric phase transition temperature of the P(VDF‐TrFE) ferroelectric, a much higher dielectric constant (about 1200 at 100 Hz) is obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 490–495, 2010  相似文献   

9.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P(VDF‐co‐TrFE‐co‐CTFE)) with internal double bond has been reported with high dielectric constant and energy density at room temperature, which is expected to serve as a promising dielectric film in high pulse discharge capacitors. An environmentally friendly one‐pot route, including the controllable hydrogenation via Cu(0) mediated single electron transfer radical chain transfer reaction (SET‐CTR) and dehydrochlorination catalyzed with N‐containing reagent, is successfully developed to synthesize P(VDF‐co‐TrFE‐co‐CTFE) containing unsaturation. The resultant polymer was carefully characterized with 1H NMR, 19F NMR, and FTIR. The composition of the resultant copolymer is strongly influenced by reaction conditions, including the reaction temperature, catalyst concentration, the types of ligands and solvents. The kinetics data of the chain transfer and elimination reaction demonstrate their well‐controlled feature of the strategy. By shifting the equilibrium between the CTR and elimination reactions dominated by N‐compounds serving as ligands in SET‐CTR and catalyst in the dehydrochlorination of P(VDF‐co‐CTFE), P(VDF‐co‐TrFE‐co‐CTFE) with tunable TrFE and double‐bond content could be synthesized in this one‐pot route. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3429–3440  相似文献   

11.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   

12.
In this study, poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly(oxyethylene methacrylate), P(VDF‐co‐CTFE)‐g‐POEM, an amphiphilic comb copolymer with hydrophobic P(VDF‐co‐CTFE) backbone and hydrophilic POEM side chains at 73:27 wt % was synthesized. The POEM side chains were grafted from the P(VDF‐co‐CTFE) mainchain backbone via atom transfer radical polymerization (ATRP) using direct initiation of the chlorine atoms in CTFE units. Synthesis of microphase‐separated P(VDF‐co‐CTFE)‐g‐POEM comb copolymer was successful, as confirmed by nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM). Nanocomposite films were prepared using the comb copolymer as a template film and the in situ reduction of AgCF3SO3 precursor to silver nanoparticles under UV irradiation. Silver nanoparticles with 4–8 nm in average size were in situ created in the solid state template film, as revealed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering (WAXS). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) presented the selective incorporation and the in situ growth of silver nanoparticles within the hydrophilic POEM domains of microphase‐separated comb copolymer film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 702–709, 2008  相似文献   

13.
Thermal processing at various temperatures has been used to fabricate poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐co‐TrFE)] films with varied crystalline properties in an attempt to improve their piezoelectric properties. Although the dielectric constant of the films annealed at higher temperature is smaller than that of cooled and quenched ones, it has been shown that the annealed films possess larger crystallinity and stacked lamellar crystal grain size. The ferroelectric domains deriving from crystal region in all the samples are effectively improved by hot polarization. As a result, the remnant polarizations (Pr) and coercive electric field (Ec) of the corresponding films are improved at a low frequency due to the response of dipoles in crystal phase, and the largest piezoelectric constant in the longitudinal thickness mode (d33=?25 pC/N) is obtained in an annealed copolymer film. The results illustrate improving the crystal structure of P(VDF‐co‐TrFE) is an effective way to realize high electromechanical properties, which provides broadly applied scenery for this kind of copolymer in piezoelectric components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

15.
The heterogeneous higher order structure and molecular motion in a single crystalline film of a vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer with 73 mol % VDF was investigated with the 1H–13C cross‐polarization/magic‐angle spinning NMR technique. A transient oscillation was observed in plots of the 13C peak intensity versus the contact time for the CH2, CHF, and CF2 groups. On the basis of the extended cross‐relaxation theory of spin diffusion, we determined that the oscillation behavior was caused by the TrFE‐rich segments in the chain and that the crystal consisted of VDF‐rich and TrFE‐rich domains. The former had TrFE‐rich segments in VDF and TrFE fractions of 0.24 and 0.27, respectively, and the latter had VDF‐rich segments in a VDF fraction of 0.49. The spin–lattice relaxation time T1ρH in the rotating frame for each group was minimal in the three temperature regions of β, αb, and αc (↑) on heating and in the two temperature regions of α1D and αc (↓) on cooling. The αc (↑) and αc (↓) processes depended on the first‐order ferroelectric phase‐transition regions on heating and cooling, respectively. The motional modes for the other processes were confirmed by the T1ρH minimum behavior of the VDF and TrFE groups in the TrFE‐rich domain and the VDF‐rich segments in the VDF‐rich domain. The β and αb processes were attributed to the flip–flop motion of the TrFE‐rich segments and the competitive motion of the TrFE‐ and VDF‐rich segments in the ferroelectric phase, respectively. The α1D process was due to the one‐dimensional diffusion motion of the conformational defects along the chain in the paraelectric phase, accompanied by the trans and gauche transformation of the VDF conformers of ttg+tg? and g+tg?tt. The effect of the competitive motion of the TrFE‐rich segment on the thermal stability of the VDF‐rich segment in the chain near the Curie temperature was examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1026–1037, 2002  相似文献   

16.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

17.
Biomacromolecules, such as enzymes are widely used for biocatalysis, both at academic and industrial level, due to their high specificity and wide applications in different reaction media. Herein, taking GOx as a representative enzyme, in‐situ RAFT polymerization of four different monomers including acrylic acid (AA), methyl acrylate (MA), poly (ethylene glycol) acrylate (PEG‐A) and tert‐butyl acrylate (TBA) were polymerized directly on the surface of GOx to afford GOx‐poly (PEG‐A)(GOx‐PPEG‐A), GOx‐poly(MA)(GOx‐PMA), GOx‐poly(AA)(GOx‐PAA), and GOx‐poly(TBA)(GOx‐PTBA) conjugates, respectively. Thereinto, PAA and PPEG‐A represent the hydrophilic polymers, while PMA and PTBA stand for the hydrophobic ones. Effects of different polymer on the properties of GOx were investigated by measuring the bioactivity and stability of the as‐prepared and different GOx‐polymer conjugates. Higher bioactivity was obtained for GOx modified with hydrophilic polymers compared with that modified with hydrophobic ones. All the tested polymers can enhance the stability of the GOx, while the hydrophobic GOx‐polymers conjugates exhibited much better stability than the hydrophilic ones. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1289–1293  相似文献   

18.
Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) backbone was grafted with crosslinkable chains of poly(hydroxyl ethyl acrylate) (PHEA) and proton conducting chains of poly(styrene sulfonic acid) (PSSA) to produce amphiphilic P(VDF‐co‐CTFE)‐g‐P(HEA‐co‐SSA) graft copolymer via atom transfer radical polymerization (ATRP). Successful synthesis and microphase‐separated structure of the copolymer were confirmed by 1H NMR, FT‐IR spectroscopy, and TEM analysis. Furthermore, this graft copolymer was thermally crosslinked with sulfosuccinic acid (SA) to produce grafted/crosslinked membranes. Ion exchange capacity (IEC) increased continuously with increasing SA contents but the water uptake increased up to 6 wt% of SA concentration, above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.062 S/cm at 6 wt% of SA concentration, resulting from competitive effect between the increase of ionic groups and the degree of crosslinking. XRD patterns also revealed that the crystalline structures of P(VDF‐co‐CTFE) disrupted upon graft polymerization and crosslinking. These membranes exhibited good thermal stability at least up to 250°C, as revealed by TGA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A five‐arm star‐shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert‐butyl acrylate (tBA), resulting in five‐arm star‐shaped poly(ethylene oxide)‐block‐poly(tert‐butyl acrylate) block copolymers. The polymerization proceeded in a controlled way using a copper(I)bromide/pentamethyl diethylenetriamine catalytic system in acetonitrile as solvent. The hydrolysis of the tBA blocks of the amphiphilic star‐shaped PEO‐b‐PtBA block copolymer resulted in dihydrophilic star structures. The encapsulation of the star‐block copolymers and their release properties in acid environment have been followed by UV‐spectroscopy and color changes, using the dye methyl orange as a hydrophilic guest molecule. Characterization of the structures has been done by 1H NMR, size exclusion chromatography, MALDI‐TOF, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 650–660, 2008  相似文献   

20.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号