首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

2.
Double hydrophilic poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PEO‐b‐PNIPAM) block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization, using a PEO‐based chain transfer agent (PEO‐CTA). The molecular structures of the copolymers were designed to be asymmetric with a short PEO block and long PNIPAM blocks. Temperature‐induced aggregation behavior of the block copolymers in dilute aqueous solutions was systematically investigated by a combination of static and dynamic light scattering. The effects of copolymer composition, concentration (Cp), and heating rate on the size, aggregation number, and morphology of the aggregates formed at temperatures above the LCST were studied. In slow heating processes, the aggregates formed by the copolymer having the longest PNIPAM block, were found to have the same morphology (spherical “crew‐cut” micelles) within the full range of Cp. Nevertheless, for the copolymer having the shortest PNIPAM block, the morphology of the aggregates showed a great dependence on Cp. Elongation of the aggregates from spherical to ellipsoidal or even cylindrical was observed. Moreover, vesicles were observed at the highest Cp investigated. Fast heating leads to different characteristics of the aggregates, including lower sizes and aggregation numbers, higher densities, and different morphologies. Thermodynamic and kinetic mechanisms were proposed to interpret these observations, including the competition between PNIPAM intrachain collapse and interchain aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4099–4110, 2009  相似文献   

3.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Thermo‐sensitive amphiphilic copolymers, PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT of hydrophilic N‐vinylcaprolactam (VCL), N‐vinylpyrrolidone (NVP), and hydrophobic Nt‐Boc‐tryptophanamido‐N′‐methacryl thioureas (TrpAMT) monomers, were synthesized and characterized by 1H NMR, UV‐spectroscopy, and GPC‐MALLS. The cloud point (CP) measurement showed that hydrophobic PTrpAMT and hydrophilic PVP segments significantly altered the phase transition temperature of PVCL with comparable molecular weight in aqueous solution. The CP of PVP‐PTrpAMT solution was 38.0°C, lower by 5.0°C than that of unmodified PVCL. In the presence of phosphate buffer saline (PBS), the CP value of the PVCL polymer decreased by ~2.0°C in comparison to that of the aqueous solution. Fluorescent spectroscopy and TEM studies revealed that PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT self‐assembled into the spherical micelles, 30–70 nm in diameter, at concentrations over their CMCs in an aqueous solution. Cytotoxicity tests demonstrated that the PVCL copolymers were not harmful to cell viability, which may favor the use of the copolymers as potential thermo‐sensitive polymers in pharmaceutical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010  相似文献   

6.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

7.
The use of mixed solvents provided an effective way to control the self‐assembly behavior and photophysical properties of a conjugated rod–coil block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO). It was shown that the balance between the π–π stacking of the P3HT and microphase separation of the copolymer could be dynamically controlled and shifted by solvent blending. Depending on the mixed solvent ratio (i.e., chloroform/methanol, anisole/chloroform, or anisole/methanol), the copolymer chains experienced different kinetic pathways, yielding a series of nanostructures such as disordered wormlike pattern, densely packed nanofibrils, and isolated nanofibrils. With the varying solvent selectivity, the P3HT‐b‐PEO chains displayed a hybrid photophysical property depending on the competition between intrachain and interchain excitonic coupling, resulting in the transformation between J‐ and H‐aggregation. Overall, this work offered an effective way to demonstrate the correlation and transformation between π–π stacking of P3HT and microphase separation, and how the conformation of P3HT chains influenced the photophysical properties of the copolymer during solvent blending. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 544–551  相似文献   

8.
We demonstrate that the volume phase transition temperature (VPTT) of copolymer microgel particles made from N‐isopropylacrylamide (NIPAm) and methacryloyl hydrazide (MH) can be tailored in a reversible manner upon the reaction of the hydrazide functional groups with aldehydes. The microgels were synthesized by precipitation polymerization in water. Due to the water‐soluble nature of the MH monomer, the VPTT at which the microgel particles contract shifts to higher values by increasing the incorporated amounts of methacryloyl hydrazide from 0 to 5.0 mol %. The VPTT of the copolymer microgel dispersions in water can be fine‐tuned upon addition of hydrophobic/hydrophilic aldehydes, which react with the hydrazide moiety to produce the hydrazone analogue. This hydrazone formation is reversible, which allows for flexible, dynamic control of the thermo‐responsive behavior of the microgels. The ability to “switch” the VPTT was demonstrated by exposing hydrophilic streptomycin sulfate salt incubated microgel particles to an excess of a hydrophobic aldehyde, that is benzaldehyde. The temperature at which these microgels contracted in size upon heating was markedly lowered in these aldehyde exchange experiments. Transformation into benzaldehyde hydrazone derivatives led to assembly of the microgel particles into small colloidal clusters at elevated temperatures. This control of supracolloidal cluster formation was also demonstrated with polystyrene particles which had a hydrazide functionalised microgel shell. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1745–1754  相似文献   

9.
We report the synthesis, characterization, and solvent‐induced structure formation in thin films of an amphiphilic rod‐coil conjugated block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide). The diblock copolymers were prepared by a facile click reaction and their characterizations as well as thermal, crystalline, optical properties, and self‐assembly behavior have been investigated in detail. A series of morphologies including two‐phase separated nanostructure, nanofibrils, and their mixed morphology could be obtained depending on the selectivity of solvents to different blocks. Structural analyses demonstrate there is a subtle balance between microphase separation of copolymer and the π‐π stacking of the conjugated P3HT and such balance can be controlled by changing the solvents of different selectivity in solution and the length of P3HT block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Novel poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) bearing pendant hydrophobic γ‐(carbamic acid benzyl ester) groups (PECB) and hydrophiphilic amino groups (PECN) were synthesized based on the functionalized comonomer γ‐(carbamic acid benzyl ester)‐ε‐caprolactone (CABCL). The thermal gelation behavior of the amphiphilic copolymer aqueous solutions was examined. The phase transition behavior could be finely tuned via the pendant groups, and an abnormal phenomenon occurred that the sol–gel transition temperature shifted to a higher temperature for PECB whereas a lower temperature for PECN. The micelles percolation was adopted to clarify the hydrogel mechanism, and the effect of the pendant groups on the micellization was further investigated in detail. The results demonstrated that the introduction of γ‐(carbamic acid benzyl ester) pendant groups significantly decreased the crystallinity of the copolymer micelles whereas amino pendant groups made the micelles easy to aggregate. Thus, the thermal gelation of PEG/PCL aqueous solution could be finely tuned by the pendant groups, and the pendant groups modified PEG/PCL hydrogels are expected to have great potential biomedical application. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2571–2581  相似文献   

11.
We report on the synthesis of novel poly(N‐isopropylacrylamide)‐b‐poly(oligo ethylene glycol methyl ether acrylate) (PNIPAM‐b‐POEGA) thermoresponsive block copolymers using reversible addition–fragmentation chain transfer polymerization methodologies. The synthesized block copolymers are characterized by gel permeation chromatography, nuclear magnetic resonance, Fourier transform infrared (FTIR) techniques in terms of molecular weight and composition. Their thermoresponsive self‐assembly in aqueous media is investigated using dynamic and static light scattering. The PNIPAM‐b‐POEGA thermoresponsive block copolymers formed aggregates in water by increasing the temperature above the lower critical solution temperature value of PNIPAM block. Solution pH seems to affect the self‐assembly behavior in some cases due to the presence of ? COOH end groups. Therefore, the copolymers were utilized as “smart” nanocarries for the hydrophobic drug indomethacin, implementing a novel encapsulation protocol taking advantage of the thermoresponsive character of the PNIPAM block. The empty and loaded self‐assembled nanocarriers systems were studied by light scattering techniques, ultraviolet–visible, and FTIR spectroscopy, which gave information on the size and structure of the nanocarriers, the drug loading content and the interactions between the drug and the components of the block copolymers. Drug loaded nanostructures show stability at room temperature, due to active drug/block copolymer interactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1467–1477  相似文献   

12.
Three diblock copolymers of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) were prepared by reversible addition‐fragmentation chain transfer technique (RAFT) with compositions fPS = 0.84, fPS = 0.29, and fPS = 0.33. Block copolymers rich in PNIPAM were blended with polystyrene and its morphological effects were studied. The morphology of thin films was induced by acetone vapor and determined in the dried state by means of TEM. Copolymers with fPS = 0.84 and fPS = 0.29 form hexagonally packed cylinder (HPC) morphologies while that with fPS = 0.33 corresponds to a lamellar structure. In almost all cases where PNIPAM constitutes the continuous phase, a contraction of the PNIPAM blocks with respect to their average unperturbed dimension was observed, contrary to what one expects from the physics of self‐assembly of block copolymers. In contrast, for HPC morphology where PNIPAM is confined in a PS matrix, both blocks are highly extended. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1368–1376  相似文献   

13.
Complex amphiphilic polymers were synthesized via core‐first polymerization followed by alkylation‐based grafting of poly(ethylene oxide) (PEO). Inimer 1‐(4′‐(bromomethyl)benzyloxy)‐2,3,5,6‐tetrafluoro‐4‐vinylbenzene was synthesized and subjected to atom transfer radical self‐condensing vinyl polymerization to afford hyperbranched fluoropolymer (HBFP) as the hydrophobic core component with a number‐averaged molecular weight of 29 kDa and polydispersity index of 2.1. The alkyl halide chain ends on the HBFP were allowed to undergo reaction with monomethoxy‐terminated poly(ethylene oxide) amine (PEOx‐NH2) at different grafting numbers and PEO chain lengths to afford PEO‐functionalized HBFPs [(PEOx)y‐HBFPs], with x = 15 while y = 16, 22, or 29, x = 44 while y = 16, and x = 112 while y = 16. The amphiphilic, grafted block copolymers were found to aggregate in aqueous solution to give micelles with number‐averaged diameters (Dav) of 12–28 nm, as measured by transmission electron microscopy (TEM). An increase of the PEO:HBFP ratio, by increase in either the grafting densities (y values) or the chain lengths (x values), led to decreased TEM‐measured diameters. These complex, amphiphilic (PEOx)y‐HBFPs, with tunable sizes, might find potential applications as nanoscopic biomedical devices, such as drug delivery vehicles and 19F magnetic resonance imaging agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3487–3496, 2010  相似文献   

14.
A series of block copolymers comprising poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) end‐functionalized with a quaternary ammonium group (RQ) was synthesized by free‐radical polymerization of N‐isopropylacrylamide with well‐defined RQPEO macroazoinitiators. The radical termination occurred mainly by disproportionation, as confirmed by combining the data from size exclusion chromatography (SEC) and rheology measurements. The copolymers denoted RQExNy differ in type of the terminal group [FQ = C8F17(CH3)2N+ or MQ = (CH3)3N+] and in the length of the PEO (Ex; x = 4, 6, or 10 K) and PNIPAM (Ny; y = 7 or 17–19 K) blocks. The type of the terminal group determined the behavior of the block copolymers in the dilute and semidilute regime. Self‐assembled species formed by both FQ and MQ modified block copolymers were detected by static light scattering measurements at 25 °C and above the lower critical solution temperature (LCST). The LCST of the block copolymers depended on the type of the RQ group and the length of the blocks. FQ‐modified copolymers form elastic gels below and above the LCST. It was inferred that the FQ groups and the PNIPAM blocks form segregated microdomains that serve as junctions to maintain a viscoelastic network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5736–5744, 2004  相似文献   

15.
The phase behavior and aggregation properties of block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronics, poloxamers) in aqueous solution have recently attracted much attention. Both experimental and theoretical studies are reviewed, not comprehensively, but with the focus on studies, partly cooperative, partly independent, performed by groups in Uppsala (light scattering and fluorescence), Roskilde (rheology and calorimetry), Risø (SANS), Graz (x-ray and speed of sound), and Lund (theoretical model calculations).The phase behavior of these copolymers is similar in many respects to that of conventional nonionic surfactants, with the appearance of hexagonal, cubic, and lamellar liquid crystalline phases at high concentrations. In the isotropic solution phase the critical concentration for micelle formation is strongly temperature dependent, and at a given concentration the monomer to micelle transition occurs gradually over a broad temperature range, partly due to the broad size polydispersity of both the PO- and EO-blocks. For some Pluronic copolymers a transition from globular to long rod-like micelles occurs above a transition temperature, resulting in a strong and sudden increase of viscosity and viscoelasticity of the solution.Size and aggregation numbers have been determined for the globular micelles in some cases, and also the rod-like micelles have been characterized. NMR and fluorescence measurements have provided further information on the properties of the micellar core and mantle. In combination, results from different measurements on the same Pluronics material indicate that the aggregation number of the micelles increases with the temperature, whereas the hydrodynmic radius varies much less. The PEO-mantle of the micelles seems to contract with increasing temperature. The core appears to contain appreciable amounts of PEO in addition to PPO (and also some water). The segregation between core and mantle is not as distinct as in normal micelles, a conclusion which is in line with the predictions from the model calculations.  相似文献   

16.
Solution property of poly(γ‐benzyl‐L ‐glutamate)‐b‐polyisoprene‐b‐poly(γ‐benzyl‐L ‐glutamate) (GIG copolymer) was studied by using dynamic light scattering and static light scattering for N,N‐dimethylformamide (DMF) solution and DMF/toluene mixed solutions. GIG copolymer proved to aggregate in DMF and under DMF‐rich condition, that is, high‐polar region. The aggregate decreased in size, and completely disappeared under toluene‐rich condition, that is, low‐polar region. The correlation between solubility parameter and aggregate size of GIG copolymer in the DMF/toluene solution systems quantitatively demonstrated how strongly polarity caused by hydrogen bond made an impact on the aggregation behavior. Because the main driving force to the aggregation under DMF‐rich condition originates with polyisoprene (PIP) blocks, the aggregate in DMF is considered to be a core‐shell micelle consisting of flexible PIP core surrounded by rigid poly(γ‐benzyl‐L ‐glutamate) (PBLG) shell. The values of dimensionless parameter ρ, defined as the ratio of radius of gyration 〈S21/2 to hydrodynamic radius RH, revealed that a single chain of GIG copolymer had the form of rigid rod with flexibility, that is, once‐broken rod, caused by the incorporation of a flexible PIP chain between two rigid PBLG rods in the DMF/toluene solution system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1740–1748, 2010  相似文献   

17.
Solution property of hydrogenated polystyrene‐b‐poly(ethylene/butylene)‐b‐polystyrene triblock copolymer (SEBS copolymer) was studied by using static light scattering and dynamic light scattering for cyclohexane and N‐methylpyrrolidone (NMP) solutions. From the values of dimensionless parameters ρ, defined as the ratio of radius of gyration 〈S21/2 to hydrodynamic radius RH, and solubility parameters, SEBS copolymer proved to exist as single chain close to random coil in nonpolar cyclohexane, whereas aggregate into the core‐shell micelle consisting of poly(ethylene/butylene) (PEB) core surrounded by PS shell in polar NMP. The core‐shell micelle formed in NMP is composed of 65 polymer chains, having three times larger average chain density (d = 0.12 g cm?3) than a single polymer chain (d = 0.04 g cm?3) in cyclohexane. The comparison with the aggregation behaviors in other solvents demonstrated that the aggregate compactness of the copolymer depended largely on solvent polarity, resulting in formation of the highly dense PEB core (Rc = 4.5 nm) and the thick PS shell (ΔR = 22.9 nm) in high‐polar NMP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 588–594, 2010  相似文献   

18.
This article describes the syntheses and solution behavior of model amphiphilic dendritic–linear diblock copolymers that self‐assemble in aqueous solutions into micelles with thermoresponsive shells. The investigated materials are constructed of poly(benzyl ether) monodendrons of the second generation ([G‐2]) or third generation ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM). [G‐2]‐PNIPAM and [G‐3]‐PNIPAM dendritic–linear diblock copolymers have been prepared by reversible addition–fragmentation transfer (RAFT) polymerizations of N‐isopropylacrylamide with a [G‐2]‐ or [G‐3]‐based RAFT agent, respectively. The critical micelle concentration (cmc) of [G‐3]‐PNIPAM220, determined by surface tensiometry, is 6.3 × 10?6 g/mL, whereas [G‐2]‐PNIPAM235 has a cmc of 1.0 × 10?5 g/mL. Transmission electron microscopy results indicate the presence of spherical micelles in aqueous solutions. The thermoresponsive conformational changes of PNIPAM chains located at the shell of the dendritic–linear diblock copolymer micelles have been thoroughly investigated with a combination of dynamic and static laser light scattering and excimer fluorescence. The thermoresponsive collapse of the PNIPAM shell is a two‐stage process; the first one occurs gradually in the temperature range of 20–29 °C, which is much lower than the lower critical solution temperature of linear PNIPAM homopolymer, followed by the second process, in which the main collapse of PNIPAM chains takes place in the narrow temperature range of 29–31 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1357–1371, 2006  相似文献   

19.
A series of novel amphiphilic brush‐dendritic‐linear poly[poly(ethylene glycol) methyl ether methacrylate]‐b‐polyamidoamine‐b‐poly(ε‐caprolactone) copolymers (PPEGMEMA‐b‐Dmb‐PCL) (m = 1, 2, and 3: the generation number of dendron) were synthesized by the combination techniques of click chemistry, atom transfer radical polymerization (ATRP), and ring‐opening polymerization (ROP). The brush‐dendritic copolymers bearing hydrophilic brush PPEGMEMA and hydrophobic dendron polyamidoamine protected by the tert‐butoxycarbonyl (Boc) groups [Dm‐(Boc) (m = 1, 2, and 3)] were for the first time prepared by ATRP of poly(ethylene glycol) methyl ether methacrylate monomer (PEGMEMA) initiated with the dendron initiator, which was prepared from 2′‐azidoethyl‐2‐bromoisobutyrate (AEBIB) and Dm‐(Boc) terminated with a clickable alkyne by click chemistry. Then, the brush‐dendritic copolymers with primary amine groups (PPEGMEMA‐b‐Dm) were obtained from the removal of the protected Boc groups of the brush‐dendritic copolymers in the presence of trifluoroacetic acid. The brush‐dendritic‐linear PPEGMEMA‐b‐Dmb‐PCL copolymers were synthesized from ROP of ε‐caprolactone monomer using PPEGMEMA‐b‐Dm as the macroinitiators and stannous octoate as catalyst in toluene at 130 °C. To the best of our knowledge, this is the first report that integrates hydrophilic brush polymer PPEGMEMA with hydrophobic polyamidoamine (PAMAM) dendron and PCL to form amphiphilic brush‐dendritic‐linear copolymers. The amphiphilic brush‐dendritic‐linear copolymers can self‐assemble into spherical micellar structures in aqueous solution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Radical polymerization of N‐isopropylacrylamide (NIPAAm) in toluene at low temperatures, in the presence of fluorinated‐alcohols, produced heterotactic polymer comprising an alternating sequence of meso and racemo dyads. The heterotacticity reached 70% in triads when polymerization was carried out at ?40 °C using nonafluoro‐tert‐butanol as the added alcohol. NMR analysis revealed that formation of a 1:1 complex of NIPAAm and fluorinated‐alcohol through C?O···H? O hydrogen bonding induces the heterotactic specificity. A mechanism for the heterotactic‐specific polymerization is proposed. Examination of the phase transition behavior of aqueous solutions of heterotactic poly(NIPAAm) revealed that the hysteresis of the phase transition between the heating and cooling cycles depended on the average length of meso dyads in poly(NIPAAm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2539–2550, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号