首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Intact leaves of Commelina communis irradiated with high fluence rates of red light, showed discrete increases in stomatal conductance in response to pulses (1-100 s) of blue light (250 μmol m?2 s?1). Red light pulses were ineffective, indicating that the conductance increases were not mediated by photosynthesis and that they constitute a specific stomatal response to blue light. The response peaked 15 min after the pulse and was completed within50–60 min. Conductance increases were proportional to pulse duration up to about 30 s and saturated at longer exposures. The relationship between stomatal responses and pulse duration approximately fitted an exponential function, with a t 9s. Pulse responses at two different fluences indicated that reciprocity held. Responses to two consecutive pulses varied with time between pulses. A saturating pulse applied immediately after a preceding one induced no additional response; two saturating pulses 50 min apart caused two identical, consecutive responses. Total increases in conductance induced by two pulses separated by intermediate time intervals increased with time between pulses with a = 9 min. These results point to a blue light-dependent photoconversion of a molecular form, with the activity of the photoconversion product decaying in a thermal reaction. Under continuous blue light, prevailing fluence rates and rates of the light and thermal reactions are postulated to determine steady-state activities of the photoconversion product and proportional increases in conductance levels. These findings have implications for the environmental and metabolic roles of the stomatal response to blue light.  相似文献   

2.
This study investigates the effects of different light qualities on the photosynthetic capacity of the brown algae Fucus vesiculosus, from the Norwegian Sea, and Fucus radicans and F. vesiculosus, from the Bothnian Sea. The electron transport rates (ETR) obtained for F. vesiculosus from the Norwegian Sea showed significantly higher levels of light saturation compared with both species of algae from the Bothnian Sea. The maximum of ETR values for the Norwegian Sea strain showed no significant changes due to varying light quality compared with the initial values. For F. vesiculosus, from the Bothnian Sea, treatment with blue light showed an effect after 1 week of 30 and 90 μmol photons m?2 s?1 (P < 0.01), and for F. radicans from the Bothnian Sea, at the irradiance of 90 μmol photons m?2 s?1 and 1 week (P < 0.01). After 1 week in the Bothnian Sea species and after 2 weeks in F. vesiculosus from the Norwegian Sea, the photosynthetic efficiency (α) was significantly higher regardless of light quality and irradiance compared with the initial values. Variation in light quality and irradiance had minor effects on the Fv:Fm values of the three algal strains studied.  相似文献   

3.
The photoreceptors involved in the photosynthetic acclimation of tomato (Lycopersicon esculentum Mill.) to increased irradiance were investigated. Plants were transferred from 100 p.mol m?2 s?1 cool white fluorescent light to higher irradiances of white light or white light supplemented with blue, red, green or yellow light. In these experiements light of all wavelengths tested was capable of causing acclimation as measured by the rate of light-saturated photosynthesis. It was concluded that the photosynthetic system rather than the blue-absorbing photoreceptor or phytochrome system acts as the photoreceptor for increased irradiance. No acclimation was observed in response to increased CO2 levels, but increasing light integral at a constant irradiance was effective in bringing about acclimation. We conclude that acclimation is a response to increased photosynthetic light capture rather than increased photosynthetic carbon fixation, and involves a photon counting mechanism.  相似文献   

4.
Studies on the antimicrobial properties of light have considerably increased due in part to the development of resistance to actual control methods. This study investigates the potential of light‐emitting diodes (LED) blue light for controlling Penicillium digitatum and Penicillium italicum. These fungi are the most devastating postharvest pathogens of citrus fruit and cause important losses due to contaminations and the development of resistant strains against fungicides. The effect of different periods and quantum fluxes, delaying light application on the growth and morphology of P. digitatum strains resistant and sensitive to fungicides, and P. italicum cultured at 20°C was examined. Results showed that blue light controls the growth of all strains and that its efficacy increases with the quantum flux. Spore germination was always avoided by exposing the cultures to high quantum flux (700 μmol m?2 s?1) for 18 h. Continuous light had an important impact on the fungus morphology and a fungicidal effect when applied at a lower quantum flux (120 μmol m?2 s?1) to a growing fungus. Sensitivity to light increased with mycelium age. Results show that blue light may be a tool for P. digitatum and P. italicum infection prevention during handling of citrus fruits.  相似文献   

5.
Abstract— In this research, we measured the short- and long-term, stem elongation responses of wild-type and aurea(au) mutant tomato plants to different photosynthetically active radiation (PAR) levels by using linear voltage transducers. Stem elongation was continuously measured in green tomato plants over 2.75 days, under 12 h light/12 h dark photoperiods or in darkness after a 6 h irradiation period. There is no significant difference in stem elongation between wild-type plants pregrown at either LOO or 400 μmol m?2 s?1 and then exposed to 12 h photoperiods. However, in the au mutant there is a very large difference between plants pregrown under 100 or 400 umol m ?2 s?1 and then exposed either to 12 h photoperiods or to continuous darkness. Total stem elongation of the wild type appears to be maximal at 100 umol m?2 s?1, while that of the au mutant appears to be maximal with PAR 400 umol m?2 s?1. Wild-type plants displayed PAR-dependent (in the range 100-800 umol m?2 s?1) inhibition of growth both during the day and during the night. In contrast, the au mutant showed a fluence-rate-dependent promotion of growth during the dark periods in the range of 10-400 umol m?2 s?1. Large, fast and opposite changes in stem elongation rate at the light/dark and dark/light transitions were present in both genotypes. Internode elongation rate in the first half of the night was always modest in wild-type tomato, whereas it increased rapidly in the au mutant. Stem elongation rate of wild type starts to increase after about 6 h in darkness, showing the typical time course of escape from Pfr-mediated inhibition of elongation by an end-of-day response. The role of phytochrome level and type in sensing light quantity is discussed.  相似文献   

6.
7.
Abstract Phototropism is a common property of plants, but it is not known if different species use the same photoreceptor for their response. We have determined fluence-response relations for phototropism in response to brief, broad-band blue irradiation for four plant species grown under red light (Amaranthus paniculatus, Linum usitatissimum, Vigna radiata and Medicago sativa) and compared these to ones previously obtained for Pisum sativum and Zea mays, grown under similar conditions. Curves for all species showed a bell-shaped dependence on fluence, a characteristic of first positive curvature as originally defined for the Avena coleoptile, and had a similar optimal fluence, near 3 H.mol m?2. We have obtained an action spectrum in the blue and UV spectral regions for first positive phototropism of the hypocotyl of alfalfa grown under red light. Fluence-response curves at wavelengths between 300 and 500 nm were nearly identical in shape and magnitude; whereas below 300 nm, their slopes and maximum curvatures were reduced. The action spectrum showed that activity rose sharply at wavelengths below 500 nm, peaked at 450 nm with shoulders on either side of that peak, and had lesser peaks at 380 and, in the far ultraviolet, at 280 nm. This action spectrum was very similar to ones in the literature (obtained between 350 and 500 nm) for first and second positive phototropism of oat coleoptiles. We conclude that the same photoreceptor mediates phototropism in oat and alfalfa.  相似文献   

8.
Abstract— The partitioning of plant growth between shoot and root has the potential to affect diverse physiological processes including water and nutrient uptake, nitrogen fixation, light interception, and interactions between plant and soil microorganisms. Root: shoot ratio is determined both by genetics and developmental status as well as by availability of water, nutrients and light. It is shown here that relative root growth was modulated by photomorphogenetic treatments designed to affect phytochrome (supplemental far-red radiation given either as an end-of-day treatment or continuously during the photoperiod) or blue light photoreceptors (blue light-deficient low pressure sodium lamps ± low irradiances of supplemental blue [i.e. 5% of total photon flux: 25 μ.mol m?2 s?1]). Photomorphogenetic control of root: shoot ratio was apparent within1–2 days when light treatments were initiated at emergence, and did not necessarily involve changes in net seedling growth. On the other hand, shortened daylength inhibited early seedling growth but had little effect on partitioning. Changes in relative root dry matter induced by supplemental far red radiation or blue light deficiency were similar to those caused by low irradiances, suggesting that phytochrome or blue light photoreceptors may be involved in regulating the partitioning of growth between shoot and root as a part of adaptation to vegetation shade. The influence of spectral quality on root: shoot ratio should be considered when comparing plants grown under different types of lighting or with different spacing.  相似文献   

9.
Abstract— Hypocotyl straight growth in mustard (Sinapis alba L.) responds very strongly and in precisely the same way to low fluence rate red (RL) and white light (WL). The effect of weak light can be attributed fully to light absorption by phytochrome. Only with increasing fluence rate an effect of blue light (BL) comes into play which cannot be explained by the action of phytochrome. However, this specific action of BL can be demonstrated in hypocotyl growth of mustard seedlings only up to 5 days after sowing (25°C). With older seedlings control of hypocotyl growth seems to be exerted exclusively via phytochrome. Regarding the far-red light dependent “high irradiance reaction” (FR-HIR) it was found that it plays a dominant role in growth of mustard only during a relatively short period. It tends to disappear in favor of a RL-HIR between 3 and 4 days after sowing. It is concluded that the seedling exhibits a largely endogenous temporal pattern of responsiveness to light. Phototropism of the mustard seedling can be elicited by low fluence rates (< 1 mW m?2) of unilateral BL. This same light has no effect on straight growth. It is concluded that BL-dependent phototropic growth response of a hypocotyl and the effect of BL on longitudinal growth of the hypocotyl are unrelated phenomena.  相似文献   

10.
This study demonstrates that UV radiation (UVR) reduces the photoprotective capacity of the diatom Phaeodactylum tricornutum by affecting xanthophyll cycle (XC) activity. The short‐term reduction of photosystem II (PSII) maximum efficiency of charge separation (Fv/Fm) in cells exposed to UVR could be explained mainly by a reduced photoprotective capacity under this condition. Phaeodactylum tricornutum cells acclimated to two different photosynthetically active radiation (PAR) intensities, high light (HL, 200 μmol quanta m?2 s?1) and low light (LL, 50 μmol quanta m?2 s?1), were exposed to saturating irradiance (1100 μmol quanta m?2 s?1) in the presence (PAR + UVR) and absence of UVR (PAR). HL cells exhibited a greater reduction in Fv/Fm in PAR + UVR when compared with the PAR treatment that was related to a reduction in the de‐epoxidation of XC pigments. In contrast, in LL cells, UVR did not considerably affect XC de‐epoxidation even though the reduction in Fv/Fm was greater than in HL cells. The negative effect of UVR on photoprotection was more pronounced in HL cells because they synthesized more XC pigments than LL cells. This was confirmed when XC activity was blocked with dithiothreitol and when PSII repair was inhibited with chloramphenicol (CAP). The differential reduction of Fv/Fm between PAR + UVR and PAR treatments disappeared when XC was blocked in HL cells. A higher reduction and an incomplete recovery of Fv/Fm were observed in cells incubated with CAP in the presence of UVR. Such responses confirm that UVR had a negative effect on photoprotective mechanisms causing an enhancement of damage by PAR, especially in HL‐acclimated cells in which heat dissipation is important for PSII regulation.  相似文献   

11.
Abstract— In Chlorella saccharophila blue light supplementary to red light stimulated the nitrate uptake rate by a factor of two. This stimulation was independent of photosynthesis as it occurred in cells where photosynthesis was totally inhibited by DCMU. The effect of blue light (2 min 25 μE m ?2 s?1 are sufficient) led to an event that persisted for 50 min (memory effect) as an enhanced nitrate uptake. However, the addition of ocadaic acid extended the effect of blue light over 90 min. Blue light alone also led to the phosphorylation of distinct proteins (120 kDa and 34 kDa) bound to the plasma membrane with that at 34 kDa being the most prominent. This phosphorylation was inhibited by staurosporine and was stimulated after the plasma membrane vesicles were treated with several freeze-thawing cycles.  相似文献   

12.
13.
Abstract— Photogeotropic equilibrium angles were measured for Phycomyces blakesleeanus wild type firstly by means of dichromatic fluence rate response curves using simultaneous irradiation with near threshold 450 nm reference light (constant at 1.2 × 10?8 W m?2) and variable fluence rates of test light (498–630 nm) from the same side. These curves showed minima for test light fluence rates that were close to the photogeotropic threshold for these wavelengths. Secondly, the time course of this inhibitory effect was studied with both the inductive reference 450 nm light (2 × 10?-7 W m?2) and the test light (606 or 450 nm) given as light pulses of 2 s duration (2 s light/48 s dark periods for 6 h). The dark period between the onset of the inductive reference light and test light pulses was varied between 0 and 48 s. No inhibitory effects were observed for simultaneous pulses; however, inhibitory effects were demonstrated for delay times of 2 s and 20 s for 606 nm as well as 450 nm test light. If the test light pulses were given immediately before the inductive reference light, only 606 nm test light was effective in producing a significant inhibitory effect. The results are discussed with regard to a multichromophoric photoreceptor system and to the wavelength dependence of the effects observed. The data and conclusions favor a photoreceptor system with at least two separate chromophoric absorptions of the blue light receptor type, one acting positively, the other acting inhibitorily, and at least one other photoreceptor of presumably minor influence.  相似文献   

14.
Abstract— Extension growth rate of light-grown mustard (Sinapis alba L.) seedlings was monitored continuously using a sensitive linear displacement transducer system. When high fluence rates (ca 2 mmol m?2 s_1) of mixed red and far-red light were presented to the growing internodes from fibre optic probes, fluctuations in extension rate occurred during the first 30 min. High red: far-red ratios (R: FR) caused growth deceleration, whilst low R: FR caused transitory growth acceleration. These changes in extension rate were not exactly as predicted from the proportions of Pr (the red-absorbing form of phytochrome) and Pfr (the far-red absorbing form of phytochrome) calculated to be established by the light sources. Nevertheless, the data demonstrate that phytochrome is able to control extension growth at fiuence rates approaching those of summer sunlight, thereby providing the capacity to sense the presence of neighbouring vegetation before shading seriously compromises photosynthesis. Varying fiuence rate over two orders of magnitude whilst maintaining R: FR constant evoked transient fluctuations in extension rate. At high R: FR, a 100-fold step down in fiuence rate led, after a lag of ca 10 min, to a transient (i.e. 20 min) deceleration of extension that was followed by a marked transient (i.e. 20 min) acceleration. After a 100-fold step up in fiuence rate, a transient (i.e. 20 min) acceleration only was observed, beginning after a lag of ca 10 min. When R: FR was low, neither a step-down nor a step-up in fluence rate resulted in appreciable fluctuations in extension rate. The data are discussed in relation to the possible role played by the accumulation of photoconversion intermediates using a simple computer model for simulating active phytochrome concentrations at high fluence rates. The possibility that the mechanism for the photoperception of light quality by phytochrome may be capable of rapid adaptation to fluence rate fluctuations is proposed.  相似文献   

15.
Characteristic differences in the light intensity curves of photosynthesis after growth of cells of Acetabularia mediterranea Lamour. (A. acetabulum (L.) Silva) in weak and strong white light were similar to those for red and blue light-treated cells, respectively. This indicated that responses to white light quantity and those to light quality might be causally related. Small differences in the thylakoid polypeptide composition of cells grown in high and low intensities of white light were not significant and thus did not help to clarify whether the adaptations to blue or red light, respectively, were the same. When the red to blue-light ratio was varied, keeping the total photon fluence rate constant, the photosynthetic capacity (red light saturated O2-production) was dependent on blue light irradiance in a logarithmic fashion. The specific influence of red light was not detectable, indicating that only blue light was effective for light irradiance adaptation in Acetabularia. The situation was different, at least for a transient period, when adaptation to light irradiance was allowed to proceed from a low photosynthetic activity after preirradiation of the cells with prolonged red light. The effect of low white light irradiances was pronounced, causing a maximum increase of photosynthetic activity within 3 days. The response to blue light was enhanced as well, and a very low photon irradiance added to continuous red light caused a change of the same order as that produced by high irradiances of blue light alone. This elevated action of low intensity white and blue light is most likely due to increased metabolite supply derived from the degradation of starch enhanced by this light quality. Therefore, photosynthetic effectiveness in Acetabularia is regulated by the irradiance of blue light and by feedback via photosynthetic products.  相似文献   

16.
A custom-built modulated split-beam spectrophotometer has been used to measure the absorbance of tissue samples and purified phytochrome whilst exposing the sample to actinic 633 nm laser radiation at fluence rates approaching those of daylight. This approach has allowed the direct observation of the accumulation of phytochrome photoconversion intermediates at high fluence rates. At ca 1250 μmol m?2 s?1 upwards of 35% of the total phytochrome was present in the form of photoconversion intermediates in tissues of maize, sunflower and tomato. In other tissues tested (wheat, bean and Amaranthus) and in purified oat phytochrome, rather smaller levels of intermediates accumulated. Upon “lights-off” only a proportion of the accumulated intermediates decayed to far-red absorbing phytochrome (Pfr), the remainder appearing as the red-absorbing form (Pr). Difference spectra suggested that, at high light levels, Pr may be reformed via a photochemical back-conversion of an intermediate in the Pr—Pfr pathway, although the involvement of intermediates in the Pfr—Pr pathway cannot be excluded. The implications of the results for the ecological function of phytochrome are discussed.  相似文献   

17.
Light has bilateral effects on phototrophic organisms. As cyanobacteria in Roman hypogea are long acclimatized to dim environment, moderate intensity of illumination can be used to alleviate biodeterioration problems on the stone substrata. Moderate intensity of light inactivates cyanobacteria by causing photoinhibition, photobleaching and photodamage to the cells. The effectiveness of light depends not only on its intensity but also on the composition and pigmentation of the component cyanobacteria in the biofilms. Red light is the most effective for the species rich in phycocyanin and allophycocyanin, such as Leptolyngbya sp. and Scytonema julianum, whereas green light is effective to inhibit the species rich in phycoerythrin, like Oculatella subterranea. White light is effective to control the grayish and the black cyanobacteria, such as Symphyonemopsis sp. and Eucapsis sp. abundant in all of these pigments. Blue light is the least effective. 150 μmol photons m?2 s?1 of blue light cannot cause biofilm damage while the same intensity of red, green or white irradiation for 14 days can severely damage the cyanobacterial cells in the biofilms due to ROS formation. Electron spin resonance spectroscopy detected the formation of radicals in different cyanobacterial cellular extracts exposed to 80 μmol photons m?2 s?1 of light.  相似文献   

18.
Abstract— The hypothesis that phytochrome functions as a sensor of vegetational shade through the perception of the red: far-red photon fluence rate ratio requires that the mechanism of perception be compensated for wavelength-independent fluctuations in fluence rate (Smith, 1982). This paper seeks to establish the lower limit of fluence-rate compensation and to assess whether or not compensation is effective at the total fluence rates typical of herbaceous canopies. Using specially-designed cabinets, Sinapis alba L. (white mustard) seedlings were grown from germination under a range of total photosynthetically-active radiation (PAR = 400 to 700 nm) values and a range of red: far-red ratios. The data indicate that fluence-rate compensation is effective above a PAR value of ca. 60 μ.mol m2 s'. Pretreating seedlings at high red: far-red ratio and a PAR level of 300 (μmol m2S-1for increasing periods of time led to an extension of fluence rate compensation to lower fluence rates. The results are discussed in relation to the photosynthetic competence of the seedlings grown under these conditions.  相似文献   

19.
Donor–π–acceptor type fluorene‐based copolymers with a sulfone unit were designed and synthesized for application in efficient pure‐blue light emitting. The electroluminescence behaviors of these copolymers were investigated by fabricating light‐emitting diodes and electrochemical cell devices. The former device little functioned but the latter worked well. The electrochemical cell devices having a configuration of ITO/PEDOT:PSS/copolymer:ionic liquid/Al exhibited purplish blue electroluminescence with an emission maximum at 434 nm (CIE coordinates (x, y) = (0.17, 0.10)) measured at 7 V. The initial positive scan of the D–π–A polysulfone based light emitting electrochemical cell with a sweep rate of 0.1 V s?1 afforded a maximum luminance of 1080 cd m?2 with a current efficiency of 1.96 cd A?1 at an operating voltage of 12.5 V. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3454–3461  相似文献   

20.
Blue diode‐based pulse amplitude modulation (PAM) technology can be used to measure the photosynthetic electron transport rate (ETR) in a purple nonsulfur anoxygenic photobacterium, Afifella (Rhodopseudomonas) marina. Rhodopseudomonads have a reaction center light harvesting antenna complex containing an RC‐2 type bacteriochlorophyll a protein (BChl a RC‐2‐LH1) which has a blue absorption peak and variable fluorescence similar to PSII. Absorptance of cells filtered onto glass fiber disks was measured using a blue–diode‐based absorptance meter (Blue‐RAT) so that absolute ETR could be calculated from PAM experiments. Maximum quantum yield (Y) was ≈0.6, decreasing exponentially as irradiance increased. ETR vs irradiance (P vs E) curves fitted the waiting‐in‐line model (ETR = (ETRmax × E/Eopt) × exp(1 ? E/Eopt)). Maximum ETR (ETRmax) was ≈1000–2000 μmol e? mg?1 BChl a h?1. Fe2+, bisulfite and thiosulfate act as photosynthetic electron donors. Optimum irradiance was ≈100 μmol m?2 s?1 PPFD even in Afifella grown in sunlight. Quantum efficiencies (α) were ≈0.3–0.4 mol e? mol hλ?1; or ≈11.8 ± 2.9 mol e? mol hλ?1 m2 μg?1 BChl a). An underlying layer of Afifella in a constructed algal/photosynthetic bacterial mat has little effect on the measured ETR of the overlying oxyphotoautotroph (Chlorella).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号