首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the substituents present on the calix-tetrapyrrole tetra-anion ligand [[R2C(C4H2N)]4]4- (R = [-(CH2)5-]0.5, Et) determines the type of reactivity of the corresponding SmII compounds with acetylene. With R = [-(CH2)5-]0.5, dehydrogenation occurred to yield the nearly colorless dinuclear diacetylide complex [[[[-(CH2)5-]4-calix-tetrapyrrole]SmIII]2(mu-C2Li4)].THF as the only detectable reaction product. Conversely, with R = Et, acetylene coupling in addition to dehydrogenation resulted in the formation of a dimeric butatrienediyl enolate derivative [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu-OCH=CH2)]]2(mu,eta2,eta'2-HC=C=C=CH)]. Reaction of the trivalent hydride [(Et8-calix-tetrapyrrole)(thf)SmIII[(mu-H)[Li(thf)]]2 or of the terminally bonded methyl derivative [(Et8-calix-tetrapyrrole)(CH3)SmIII[[Li(thf)]2[Li(thf)2](mu3-Cl)]] with acetylene resulted in a mixture of the carbide [[(Et8-calix-tetrapyrrole)SmIII]2(mu-C2Li4)].Et2O with the dimerization product [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu3-OCH=CH2)]]2-mu,eta2,eta'2-HC=C=C=CH)]. The same reaction also yielded a third product, a trivalent complex [[(Et8-calix-tetrapyrrole)SmIII[Li(thf)2]]2], in which the macrocycle was isomerized by shifting the ring attachment of one of the four pyrrole rings.  相似文献   

2.
The reaction of a mixture of 1 equiv of PhPH(2) and 2 equiv of PhNHSiMe(2)CH(2)Cl with 4 equiv of Bu(n)Li followed by the addition of THF generates the lithiated ligand precursor [NPN]Li(2).(THF)(2) (where [NPN] = PhP(CH(2)SiMe(2)NPh)(2)). The reaction of [NPN]Li(2).(THF)(2) with TaMe(3)Cl(2) produces [NPN]TaMe(3), which reacts under H(2) to yield the diamagnetic dinuclear Ta(IV) tetrahydride ([NPN]Ta)(2)(mu-H)(4). This hydride reacts with N(2) with the loss of H(2) to produce ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)), which was characterized both in solution and in the solid state, and contains strongly activated N(2) bound in the unprecedented side-on end-on dinuclear bonding mode. A density functional theory calculation on the model complex [(H(3)P)(H(2)N)(2)Ta(mu-H)](2)(mu-eta(1):eta(2)-N(2)) provides insight into the molecular orbital interactions involved in the side-on end-on bonding mode of dinitrogen. The reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with propene generates the end-on bound dinitrogen complex ([NPN]Ta(CH(2)CH(2)CH(3)))(2)(mu-eta(1):eta(1)-N(2)), and the reaction of [NPN]Li(2).(THF)(2) with NbCl(3)(DME) generates the end-on bound dinitrogen complex ([NPN]NbCl)(2)(mu-eta(1):eta(1)-N(2)). These two end-on bound dinitrogen complexes provide evidence that the bridging hydride ligands are responsible for the unusual bonding mode of dinitrogen in ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)). The dinitrogen moiety in the side-on end-on mode is amenable to functionalization; the reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with PhCH(2)Br results in C-N bond formation to yield [NPN]Ta(mu-eta(1):eta(2)-N(2)CH(2)Ph)(mu-H)(2)TaBr[NPN]. Nitrogen-15 NMR spectral data are provided for all the tantalum-dinitrogen complexes and derivatives described.  相似文献   

3.
Two-electron reduction of penta(organo)[60]fullerenes C(60)Ar(5)H (Ar = Ph and biphenyl) by potassium/mercury amalgam afforded potassium complexes of the corresponding open-shell radical dianions [K+(thf)n]2[C60Ar5(2-.)]. These compounds were characterized by UV-visible-near-IR and electron spin resonance spectroscopy in solution. Anaerobic crystallization of [K+(thf)n]2[C60(biphenyl)(5)(2-.)] that exists largely as a monomer in solution gave black crystals of its dimer [K+(thf)3]4[(biphenyl)5C60-C60(biphenyl)5(4-)], in which the two fullerene units are connected by a C-C single bond [1.577(11) A] as determined by X-ray diffraction. Three-electron reduction of C60Ar5H with metallic potassium gave a black-green trianion [K+(thf)n]3[C60Ar5(3-)]. The reaction of the trianion with an alkyl halide RBr (R = PhCH(2) and Ph(2)CH) regioselectively afforded a hepta-organofullerene C60Ar5R2H, from which a potassium complex [K+(thf)n][C60(biphenyl)5(CH2Ph)(2)(-)] and a palladium complex Pd[C60(biphenyl)5(CH2Ph)2](pi-methallyl) as well as octa-organofullerene compounds C60(biphenyl)5(CH2Ph)3H2 and Ru[C60(biphenyl)5(C2Ph)3H]Cp were synthesized. These compounds possess a dibenzo-fused corannulene pi-electron conjugated system and are luminescent.  相似文献   

4.
The study of the reaction between the ethylene [Pt(eta-H2C = CH2)(PPh3)2] or alkyne [Pt(eta2-HC [triple bond] CR)(PPh3)2] (R = SiMe3 1, Bu(t) 2) complexes with [cis-Pt(C6F5)2(thf)2] (thf = tetrahydrofuran) has enabled us to observe the existence of competitive processes between the activation of a P-C(Ph) bond on the PPh3 ligand, to give the binuclear derivative [cis-(C6F5)2Pt(mu-Ph)(mu-PPh2)Pt(PPh3)] 3, and the activation of a C-H bond of the unsaturated group, to give the corresponding (mu-hydride)(mu-vinyl) [cis, cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-CH = CH2)Pt(C6F5)2] 4 or (mu-hydride)(mu-alkynyl) [cis,cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-C [triple bond]CR)Pt(C6F5)2] (R = SiMe3 5, Bu(t) 6) compounds, respectively. The monitoring of these reactions by NMR spectroscopy has allowed us to detect several intermediates, and to propose a mechanism for the C-H bond activation. In addition, the structures of the (muo-hydride)(mu-alkynyl) complex 5 and the unprecedented (mu-hydride)(mu-vinyl) derivative 4 have been obtained by X-ray crystallographic analyses.  相似文献   

5.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

6.
The ion-contact complexes [{(eta(5)-Cp)(2)Mn(eta(2):eta(5)-Cp)K}(3)]x0.5 THF (1x0.5 THF) and [{(eta(2)-Cp)(2)(eta(2);eta(5)-MeCp)MnK(thf)}]x2 THF (2x2 THF) and ion-separated complexes [Mg(thf)(6)][(eta(2)-Cp)(3)Mn](2) (3), [Mg(thf)(6)][(eta(2)-Cp)(eta(2)-MeCp)(2)Mn)](2)x0.5 THF (4x0.5 THF), [Mg(thf)(6)][(eta(2)-MeCp)(3)Mn)](2)x0.5 THF (5x0.5 THF) and [Li([12]crown-4)](5)[(eta-Cp)(3)Mn](5) (6) (Cp=C(5)H(5), CpMe=C(5)H(4)CH(3)), have been prepared and structurally characterised. The effects of varying the Cp and CpMe ligands in complexes 1-5 have been probed by variable-temperature magnetic susceptibility measurements and EPR spectroscopic studies.  相似文献   

7.
The new ytterbium(II) thiocyanate complex [Yb(NCS)2(thf)2] (1), synthesised by redox transmetallation between [Hg(SCN)2] and ytterbium metal in THF at room temperature, gave monomeric, eight coordinate [Yb-(NCS)2(dme)3] (2, dme = 1,2-dimethoxyethane) on crystallisation from DME, and is a powerful, synthetically useful reductant. Thus, oxidation of 1 with Hg(SCN)2, Hg(C6F5)2/HOdpp (HOdpp = 2,6-diphenylphenol), TlCp (Cp = C5H5 or CH3C5H4), Tl(Ph2pz) (Ph2pz = 3,5-diphenylpyrazolate) and CCl3CCl3 in THF yielded the ytterbium(II) complexes [Yb(NCS)3(thf)4] (3), [Yb-(NCS)2(Odpp)(thf)3](4), [Yb(NCS)2Cp-(thf)3] (Cp = C5H5 (5), CH3C5H4 (6)), [Yb(NCS)2(Ph2pz)(thf)4] (7) and [Yb(NCS)2Cl(thf)4] (8). In the solid state, complexes 4, 6 and 7 were shown by X-ray crystallography to be six, eight and eight coordinate monomers, respectively. Exclusively terminal, N-bound transoid thiocyanate bonding is observed with eta1-Odpp (4), eta5/-C5H4Me (6) and eta2-Ph2Pz (7) ligands attached approximately perpendicular to the N...N vector. The chloride complex 8 is not a molecular species, but consists of discrete, seven coordinate [YbCl2(thf)5] cations and [Yb(NCS)4(thf)3] anions. By contrast, oxidation of 1 with TlO2CPh gave a mixture of [[Yb(NCS)-(O2CPh)2(thf)2]2] (9) and 3 through rearrangement of an initially formed [Yb(NCS)2(O2CPh)] species. The X-ray structure of 9 indicates a dimeric complex with a (Yb(mu-O2CPh)4Yb] core that contains both bridging bidentate and bridging tridentate benzoate groups, and with a terminal N-bound thiocyanate and two THF ligands on each ytterbium. Reduction of Ph2CO with 1 in THF yielded the dinuclear complex [[Yb(NCS)2(thf)3]2(mu-OC(Ph)2C(Ph)2O)] (10), in which two octahedral Yb centres are bridged by a 1,1,2,2-tetraphenylethane-1,2-diolate ligand, derived from reductive coupling of the benzophenone reagent.  相似文献   

8.
The compounds [K((mu-N(SiMe3)C(Ph))2CH)(thf)2]infinity 1, [K(mu-N(SiMe3)C(Ph)C(H)C(Ph)NH)L]2 [L = (thf)2 2, tmen 3], [K(mu-NSi(Me)2C(Ph)C(H)C(Ph)N)(thf)3]2 4 and [K(N(H)C(Ph))2CH](thf)0.5 5 have been prepared from K[(N(SiMe3)C(Ph))2CH] and the X-ray structures of 1-4 are reported.  相似文献   

9.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

10.
The elongated dihydrogen complex [formula: see text](1) reacts with 1,1-diphenyl-2-propyn-1-ol and 2-methyl-3-butyn-2-ol to give the hydride-hydroxyvinylidene-pi-alkynol derivatives [OsH{=C=CHC(OH)R2}{eta2-HC(triple bond)CC(OH)R2}(PiPr3)2]BF4 (R = Ph (2), Me (3)), where the pi-alkynols act as four-electron donor ligands. Treatment of 2 and 3 with HBF(4) and coordinating solvents leads to the dicationic hydride-alkenylcarbyne compounds [OsH((triple bond)CCH=CR2)S2(PiPr3)2][BF4]2 (R = Ph, S = H(2)O (4), CH(3)CN (5); R = Me, S = CH(3)CN (6)), which in acetonitrile evolve into the alkenylcarbene complexes [Os(=CHCH=CR2)(CH3CN)3(PiPr3)2][BF4](2) (R = Ph (7), Me (8)) by means of a concerted 1,2-hydrogen shift from the osmium to the carbyne carbon atom. Treatment of 2-propanol solutions of 5 with NaCl affords OsHCl2((triple bond)CCH=CPh2)(PiPr3)2 (10), which reacts with AgBF(4) and acetonitrile to give [OsHCl((triple bond)CCH=CPh2)(CH3CN)(PiPr3)2]BF(4) (11). In this solvent complex 11 is converted to [OsCl(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF(4) (12). Complex 5 reacts with CO to give [Os(=CHCH=CPh2)(CO)(CH3CN)2(PiPr3)2][BF(4)](2) (15). DFT calculations and kinetic studies for the hydride-alkenylcarbyne to alkenylcarbene transformation show that the difference of energy between the starting compounds and the transition states, which can be described as eta(2)-carbene species [formula: see text] increases with the basicity of the metallic center. The X-ray structures of 4 and 7 and the rotational barriers for the carbene ligands of 7, 8, and 12 are also reported.  相似文献   

11.
Treatment of the recently reported potassium salt [K(thf)(n)][N(PPh(2))(2)] (n=1.25, 1.5) with anhydrous yttrium or lanthanide trichlorides in THF leads after crystallization from THF/n-pentane (1:2) to the monosubstituted diphosphanylamide complexes [LnCl(2)[(Ph(2)P)(2)N](thf)(3)] (Ln=Y, Sm, Er, Yb). The single-crystal X-ray structures of these complexes show that the metal atoms are surrounded by seven ligands in a distorted pentagonal bipyramidal arrangement, in which the chlorine atoms are located in the apical positions. The diphosphanylamide ligand is always eta(2)-coordinated through the nitrogen atom and one phosphorus atom. Further reaction of [SmCl(2)[(Ph(2)P)(2)N](thf)(3)] with K(2)C(8)H(8) or reaction of [LnI(eta(8)-C(8)H(8))(thf)(3)] with [K(thf)(n)][N(PPh(2))(2)] in THF gives the corresponding cyclooctatetraene complexes [Ln[(Ph(2)P)(2)N](eta(8)-C(8)H(8))(thf)(2)] (Ln=La, Sm). The single crystals of these compounds contain enantiomerically pure complexes. Both compounds adopt a four-legged piano-stool conformation in the solid state. The structures of the A and the C enantiomers were established by single-crystal X-ray diffraction. The more soluble bistrimethylsilyl cyclooctatetraene complex [Y[(Ph(2)P)(2)N](eta(8)-1,4-(Me(3)Si)(2)C(8)H(6))(thf)(2)] was obtained by transmetallation of Li(2)[1,4-(Me(3)Si)(2)C(8)H(6)] with anhydrous yttrium trichloride in THF followed by the addition of one equivalent of [K(thf)(n)][N(PPh(2))(2)]. The (89)Y NMR signal of the complex is split up into a triplet, supporting other observations that the phosphorus atoms are chemically equivalent in solution and, thus, dynamic behavior of the ligand in solution can be anticipated.  相似文献   

12.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

13.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

14.
A zwitterionic palladium complex [[Ph(2)BP(2)]Pd(THF)(2)][OTf] (1) (where [Ph(2)BP(2)] = [Ph(2)B(CH(2)PPh(2))(2)](-)) reacts with trialkylamines to activate a C-H bond adjacent to the amine N atom, thereby producing iminium adduct complexes [Ph(2)BP(2)]Pd(N,C:eta(2)-NR(2)CHR'). In all cases examined the amine activation process is selective for the secondary C-H bond position adjacent to the N atom. These palladacycles undergo facile beta-hydride elimination/olefin reinsertion processes as evident from deuterium scrambling studies and chemical trap studies. The kinetics of the amine activation process was explored, and beta-hydride elimination appears to be the rate-limiting step. A large kinetic deuterium isotope effect for the amine activation process is evident. The reaction profile in less polar solvents such as benzene and toluene is different at room temperature and leads to dimeric [[Ph(2)BP(2)]Pd](2) (4) as the dominant palladium product. Low-temperature toluene-d(8) experiments proceed more cleanly, and intermediates assigned as [Ph(2)BP(2)]Pd(NEt(3))(OTf) and the iminium hydride species [[Ph(2)BP(2)]Pd(H)(Et(2)N=CHCH(3))][OTf] are directly observed. The complex (Ph(2)SiP(2))Pd(OTf)(2) (14) was also studied for amine activation and generates dimeric [(Ph(2)SiP(2))Pd](2)[OTf](2) (16) as the dominant palladium product. These collective data are discussed with respect to the mechanism of the amine activation and, in particular, the influence that solvent polarity and charge have on the overall reaction profile.  相似文献   

15.
The insertion chemistry of the hydride complex trans-Mo(dmpe)(2)(H)(NO) (1) (dmpe = bis(dimethylphosphino)ethane) with imines has been investigated. It was found that disubstituted aromatic imines RCH[double bond]NR' (R, R' = Ar) insert into the Mo-H bond of 1, while a series of various mono- and other disubstituted imines do not react. The insertion products trans-Mo(dmpe)(2)(NO)[NR'(CH(2)R)] (R = R' = Ph (2); R = Cp(2)Fe, R' = Ph (3); R = Ph, R' = Cp(2)Fe (4); R = 1-naphthyl, R' = Ph (5)) have been isolated and fully characterized by elemental analysis, IR and NMR spectroscopy, and mass spectrometry. The imine PhCH[double bond]NC(10)H(7) (C(10)H(7) = 1-naphthyl) reacted with 1 establishing an equilibrium to produce the nonisolable complex trans-Mo(dmpe)(2)(NO)[NC(10)H(7)(CH(2)Ph)] (6). The equilibrium constant for this reaction has been derived from VT-NMR measurements, and the Delta H and Delta S values of this reaction were calculated to be -48.8 +/- 0.4 kJ.mol(-1) and -33 +/- 1 J.K(-1).mol(-1) reflecting a mild exothermic process and its associative nature. Single-crystal X-ray diffraction analyses were carried out on 2-5.  相似文献   

16.
The redox reaction of [Yb(C(9)H(7))(2)(thf)(2)] with the diazabutadiene PhN==C(Me)--C(Me)==NPh (DAD) has been found to depend on the molar ratio of the reactants. Reaction in a 1:2 molar ratio affords the dinuclear mixed-valent complex [Yb(2)(mu-eta(5):eta(4)-C(9)H(7))(eta(5)-C(9)H(7))(2){mu-eta(4):eta(4)-PhNC(Me)==C(Me)NPh}] containing an indenyl ligand with an unusual mu-eta(5):eta(4) bridging coordination. Reaction of equimolar amounts of these compounds results in an organolanthanide-mediated reductive coupling of the DAD ligands and formation of the tetranuclear mixed-valent complex [Yb(2)(mu-eta(5):eta(4)-C(9)H(7))(eta(5)-C(9)H(7))(2){mu-eta(4):eta(4)-PhNC(CH(2))==C(Me)NPh}](2) with a novel tetradentate tetraimine ligand.  相似文献   

17.
The late-transition-metal parent amido compound [Ir(Cp*)(PMe3)(Ph)(NH2)] (2) has been synthesized by deprotonation of the corresponding ammine complex [Ir(Cp*)(PMe3)(Ph)(NH3)][OTf] (6) with KN(SiMe3)2. An X-ray structure determination has ascertained its monomeric nature. Proton-transfer studies indicate that 2 can successfully deprotonate p-nitrophenylacetonitrile, aniline, and phenol. Crystallographic analysis has revealed that the ion pair [Ir(Cp*)(PMe3)(Ph)(NH3)][OPh] (8) exists as a hydrogen-bonded dimer in the solid state. Reactions of 2 with isocyanates and carbodiimides lead to overall insertion of the heterocumulenes into the N--H bond of the Ir-bonded amido group, demonstrating the ability of 2 to act as an efficient nucleophile. Intriguing reactivity is observed when amide 2 reacts with CO or 2,6-dimethylphenyl isocyanide. eta4-Tetramethylfulvene complexes [Ir(eta4-C5Me4CH2)(PMe3)(Ph)(L)] (L=CO (15), CNC6H3-2,6-(CH3)2 (16)) are formed in solution through displacement of the amido group by the incoming ligand followed by deprotonation of a methyl group on the Cp* ring and liberation of ammonia. Conclusive evidence for the presence of the Ir-bonded eta4-tetramethylfulvene moiety in the solid state has been provided by an X-ray diffraction study of complex 16.  相似文献   

18.
Structurally similar but charge-differentiated platinum complexes have been prepared using the bidentate phosphine ligands [Ph(2)B(CH(2)PPh(2))(2)], ([Ph(2)BP(2)], [1]), Ph(2)Si(CH(2)PPh(2))(2), (Ph(2)SiP(2), 2), and H(2)C(CH(2)PPh(2))(2), (dppp, 3). The relative electronic impact of each ligand with respect to a coordinated metal center's electron-richness has been examined using comparative molybdenum and platinum model carbonyl and alkyl complexes. Complexes supported by anionic [1] are shown to be more electron-rich than those supported by 2 and 3. A study of the temperature and THF dependence of the rate of THF self-exchange between neutral, formally zwitterionic [Ph(2)BP(2)]Pt(Me)(THF) (13) and its cationic relative [(Ph(2)SiP(2))Pt(Me)(THF)][B(C(6)F(5))(4)] (14) demonstrates that different exchange mechanisms are operative for the two systems. Whereas cationic 14 displays THF-dependent, associative THF exchange in benzene, the mechanism of THF exchange for neutral 13 appears to be a THF independent, ligand-assisted process involving an anchimeric, eta(3)-binding mode of the [Ph(2)BP(2)] ligand. The methyl solvento species 13, 14, and [(dppp)Pt(Me)(THF)][B(C(6)F(5))(4)] (15), each undergo a C-H bond activation reaction with benzene that generates their corresponding phenyl solvento complexes [Ph(2)BP(2)]Pt(Ph)(THF) (16), [(Ph(2)SiP(2))Pt(Ph)(THF)][B(C(6)F(5))(4)] (17), and [(dppp)Pt(Ph)(THF)][B(C(6)F(5))(4)] (18). Examination of the kinetics of each C-H bond activation process shows that neutral 13 reacts faster than both of the cations 14 and 15. The magnitude of the primary kinetic isotope effect measured for the neutral versus the cationic systems also differs markedly (k(C(6)H(6))/k(C(6)D(6)): 13 = 1.26; 14 = 6.52; 15 approximately 6). THF inhibits the rate of the thermolysis reaction in all three cases. Extended thermolysis of 17 and 18 results in an aryl coupling process that produces the dicationic, biphenyl-bridged platinum dimers [[(Ph(2)SiP(2))Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (19) and [[(dppp)Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (20). Extended thermolysis of neutral [Ph(2)BP(2)]Pt(Ph)(THF) (16) results primarily in a disproportionation into the complex molecular salt [[Ph(2)BP(2)]PtPh(2)](-)[[Ph(2)BP(2)]Pt(THF)(2)](+). The bulky phosphine adducts [Ph(2)BP(2)]Pt(Me)[P(C(6)F(5))(3)] (25) and [(Ph(2)SiP(2))Pt(Me)[P(C(6)F(5))(3)]][B(C(6)F(5))(4)] (29) also undergo thermolysis in benzene to produce their respective phenyl complexes, but at a much slower rate than for 13-15. Inspection of the methane byproducts from thermolysis of 13, 14, 15, 25, and 29 in benzene-d(6) shows only CH(4) and CH(3)D. Whereas CH(3)D is the dominant byproduct for 14, 15, 25, and 29, CH(4) is the dominant byproduct for 13. Solution NMR data obtained for 13, its (13)C-labeled derivative [Ph(2)BP(2)]Pt((13)CH(3))(THF) (13-(13)()CH(3)()), and its deuterium-labeled derivative [Ph(2)B(CH(2)P(C(6)D(5))(2))(2)]Pt(Me)(THF) (13-d(20)()), establish that reversible [Ph(2)BP(2)]-metalation processes are operative in benzene solution. Comparison of the rate of first-order decay of 13 versus the decay of d(20)-labeled 13-d(20)() in benzene-d(6) affords k(13)()/k(13-d20)() approximately 3. The NMR data obtained for 13, 13-(13)()CH(3)(), and 13-d(20)() suggest that ligand metalation processes involve both the diphenylborate and the arylphosphine positions of the [Ph(2)BP(2)] auxiliary. The former type leads to a moderately stable and spectroscopically detectable platinum(IV) intermediate. All of these data provide a mechanistic outline of the benzene solution chemistries for the zwitterionic and the cationic systems that highlights their key similarities and differences.  相似文献   

19.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

20.
The reaction of the C=N bond in PhCH=NPh with the carbanionic species Ph2PCH2-, leading to the N-phenyl beta-aminophosphine Ph2PCH2CH(Ph)NHPh, L1, is described. This molecule reacts with different organic electrophiles to afford related compounds Ph2PCH2CH(Ph)NPhX (X = SiMe3, L2; COPh, L4), [Ph2MePCH2CH(Ph)NHPh]+(I-), L3, and [Ph2PCH2CH(Ph)N(Ph)CO]2, L5, containing two amido and two phosphino functions. The coordination properties of L1, L2, and L4 have been studied in palladium chemistry. The X-ray structure of [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] shows the bidentate coordination mode for the L1 ligand with equatorial C(Ph)-N(Ph) phenyl groups. [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] crystallizes at 298 K in the space group P2(1)/n with cell parameters a = 10.689(2) A, b = 21.345(3) A, c = 12.282(2) A, beta = 90.294(12) degrees, Z = 4, D(calcd) = 1.526. The reaction between 2 equiv of L1 and [PdCl(eta3-C3H5)]2 affords the [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] complex in which an unexpected N-H.Cl intramolecular interaction has been observed by an X-ray diffraction analysis. [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] crystallizes at 298 K in the monoclinic space group Cc with cell parameters a = 10.912(1) A, b = 17.194(2) A, c = 14.169(2) A, beta = 100.651(9) degrees, Z = 4, D(calcd) = 1.435. Neutral and cationic alkyl or allyl palladium chloride complexes containing L1 are also reported as well as a neutral allyl palladium chloride complex containing L4. Variable-temperature 31P[1H] NMR studies on the allyl complexes show that the eta3/eta1 allyl interconversion is enhanced by a positive charge and also by a N-H.Cl intramolecular interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号