首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
氢气在单壁碳纳米管束的吸附的密度泛函研究   总被引:5,自引:2,他引:3  
张现仁  汪文川 《化学学报》2002,60(8):1396-1404
作者利用密度泛函理论(DFT)计算了氢气在单壁碳纳米管束(SWNTs)中管内 和管间的吸附。考察了温度,孔径以及压力对吸附的分子数密度,重量百分比,单 位体积储存能力以及超额吸附量的影响。DFT计算发现,较大的孔径有利于氢气在 SWNTs中的吸附且氢气在管隙中的吸附不可忽略。计算表明在77 K和6 MPa时,氢气 在2.719 mm的SWNTs的总的吸附的重量百分比分别可达到13.2 wt%,这约是美国能 源部(DOE)目标值的两倍,而单位体积储存能力在DOE目标值附近,而在300 K和 6 MPa时,氢气在2.719 nm的SWNTs的总的吸附的重量百分比仅为1.5 wt%。通过实 验结果与计算结果的比较表明,密度泛函理论的计算结果支持SWNTs有较高的吸附 储氢能力的实验结论。  相似文献   

2.
The nonbonded and bonded force field parameters for carbon atoms in single-wall carbon nanotubes (SWNT) are fitted by means of quantum chemistry calculations with considering the periodic boundary conditions. The nonbonded parameters between carbon atoms and hydrogen atoms are fitted as well. All the fitted parameters are verified by comparing to quantum chemistry results and by calculating Young's modulus. Adsorption of Hydrogen molecules are then carried out on a bundle of self-assembled SWNTs. The adsorption isotherms are consistent to the Freundlich equation. Both hydrogen molecules adsorbed outside and inside the SWNTs are counted. According to our result, hydrogen molecules adsorbed inside the SWNTs are more stable at a relatively high temperature and are playing an important part in total amount of the adsorbed molecules. While C(10,10) have the highest adsorption capacities in most of the temperatures, hydrogen molecules inside C(5,5) are the most stable of all the four kinds of SWNTs. Thus, balancing adsorption capacities and strength of interaction can be important in choosing SWNT for gas adsorption. Besides, we deduct an equation that can describe the relation between hydrogen pressure and amount of SWNTs based on our simulation results. The hydrogen pressure may decrease by adding SWNTs in the system. The fitting method in our system is valid to SWNTs and can be tested in further studies of similar systems. © 2018 Wiley Periodicals, Inc.  相似文献   

3.
The physisorption of radiolabeled (125)I(-) ions from aqueous solution and the Brunauer-Emmett-Teller (BET) surface areas of various carbonaceous materials [HiPco single-wall carbon nanotubes (SWNTs), F-SWNTs, cut SWNTs, charcoal, graphite, F-graphite and C(60)] have been measured and compared. By far, cut SWNTs (mainly 20-50 nm lengths) displayed the largest surface area of the materials (1180 m(2).g(-1)), being approximately double that of uncut SWNT and charcoal. At low concentrations of (125)I(-), nearly all of the (125)I(-) was adsorbed from aqueous solution within 1 min at room temperature by the cut SWNTs, uncut SWNTs, and charcoal; the other materials showed much less adsorption under the same conditions. Once adsorbed, the (125)I(-) wash-off rate by pure water was highly variable but was especially slow for cut SWNTs (t(1/2) approximately 2720 h) compared to the other materials; wash-off of (125)I(-) by an aqueous H(2)O(2) solution was even slower (t(1/2) approximately 14 300 h). Taken together, these data demonstrate the greatly increased surface area and dramatically enhanced retention properties of cut SWNTs over uncut SWNTs.  相似文献   

4.
A class of high-surface-area carbon hypothetical structures has been investigated that goes beyond the traditional model of parallel graphene sheets hosting layers of physisorbed hydrogen in slit-shaped pores of variable width. The investigation focuses on structures with locally planar units (unbounded or bounded fragments of graphene sheets), and variable ratios of in-plane to edge atoms. Adsorption of molecular hydrogen on these structures was studied by performing grand canonical Monte Carlo simulations with appropriately chosen adsorbent-adsorbate interaction potentials. The interaction models were tested by comparing simulated adsorption isotherms with experimental isotherms on a high-performance activated carbon with well-defined pore structure (approximately bimodal pore-size distribution), and remarkable agreement between computed and experimental isotherms was obtained, both for gravimetric excess adsorption and for gravimetric storage capacity. From this analysis and the simulations performed on the new structures, a rich spectrum of relationships between structural characteristics of carbons and ensuing hydrogen adsorption (structure-function relationships) emerges: (i) Storage capacities higher than in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets, which creates surface areas exceeding of 2600 m(2)/g, the maximum surface area for infinite graphene sheets, carried mainly by edge sites; we call the resulting structures open carbon frameworks (OCF). (ii) For OCFs with a ratio of in-plane to edge sites ≈1 and surface areas 3800-6500 m(2)/g, we found record maximum excess adsorption of 75-85 g of H(2)/kg of C at 77 K and record storage capacity of 100-260 g of H(2)/kg of C at 77 K and 100 bar. (iii) The adsorption in structures having large specific surface area built from small polycyclic aromatic hydrocarbons cannot be further increased because their energy of adsorption is low. (iv) Additional increase of hydrogen uptake could potentially be achieved by chemical substitution and/or intercalation of OCF structures, in order to increase the energy of adsorption. We conclude that OCF structures, if synthesized, will give hydrogen uptake at the level required for mobile applications. The conclusions define the physical limits of hydrogen adsorption in carbon-based porous structures.  相似文献   

5.
Using the density functional theory and molecular mechanics methods, we calculated the binding energy and parameters about the primitive cell designed by us with the adamantane and the nitrogen heterocyclic ring, the vibrational frequencies about the small complexes. Grand canonical Monte Carlo simulations were performed to predict the capacities for the hydrogen storage and adsorption isotherms. The results show the positive effects of bigger specific surface area and pore volume on hydrogen storage and isosteric heat. The gravimetric hydrogen uptake of adamantane‐based nitrogen‐heterocyclic ring of quaterpyridyl can reach 9.02 wt % at room temperature and 100 bar. But the volumetric H2 capacities of the four materials are low at T = 298 K because of weak interaction between the materials and H2 molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Recently there has been lot of interest in the development of hydrogen storage in various systems for the large-scale application of fuel cells, mobiles and for automotive uses. Hectic materials research is going on throughout the world with various adsorption mechanisms to increase the storage capacity. It was observed that physisorption proves to be an effective way for this purpose. Some of the materials in this race include graphite, zeolite, carbon fibers and nanotubes. Among all these, the versatile material carbon nanotube (CNT) has a number of favorable points like porous nature, high surface area, hollowness, high stability and light weight, which facilitate the hydrogen adsorption in both outer and inner portions. In this work we have considered armchair (5,5), zig zag (10,0) and chiral tubes (8,2) and (6,4) with and without structural defects to study the physisorption of hydrogen on the surface of carbon nanotubes using DFT calculations. For two different H2 configurations, adsorption binding energies are estimated both for defect free and defected carbon nanotubes. We could observe larger adsorption energies for the configuration in which the hydrogen molecular axis perpendicular to the hexagonal carbon ring than for parallel to C–C bond configuration corresponding to the defect free nanotubes. For defected tubes the adsorption energies are calculated for various configurations such as molecular axis perpendicular to a defect site octagon and parallel to C–C bond of octagon and another case where the axis perpendicular to hexagon in defected tube. The adsorption binding energy values are compared with defect free case. The results are discussed in detail for hydrogen storage applications.  相似文献   

7.
活性碳纤维对银离子还原吸附能力的改进   总被引:8,自引:0,他引:8  
活性碳纤维不仅对有机物有高的吸附容量,对贵金属离子也具有强的还原吸附能力,可将Pd(Ⅱ),Ag(Ⅰ),Au(Ⅲ)等离子还原为金属单质。因而可用于提取矿液或加收废液中的贵金属。由此,提高或改善贵金属在活性碳纤维上的还原吸附容量或分布形成,显得非常重要。本文研究了活性碳纤维制备条件、表面氧化改性、以有负载有机物等对活性碳纤维还原能力的影响。结果表明,(1)制备条件对剑麻基活性碳纤维的还原能力有很大的影响。用H3PO4或ZnCl2活化的活性碳纤维对银离子具有更高的还原吸附容量,分别可达250和700mg/g,约为水蒸汽活化剑麻基活性碳纤维对银离子还原吸附容量的2倍和5倍。(2)过氧化氢、高锰酸钾、或硝酸等无机氧化剂对活性碳纤维进行表面改性,也能提高活性碳纤维的还原能力。结果表明,虽然改性活性碳纤维的比表面积和孔体积下降10-20%左右,但基表面含氧量及含氧基团的种类发生了改变。这些改性活性碳纤维对Ag(NH3)2^ 的还原吸附量大幅度提高,可达550mg/g以上。推断表面改性在活性碳纤维表面创造了更多有利于碱性条件下发生氧化还原的活性点。(3)在活性碳纤维表面负载适当的有机物如亚甲基蓝、苯胺或对硝基苯酚,也能显著提高活性碳纤维对Ag(NH3)2^ 的还原吸附能力。  相似文献   

8.
We report the synthesis of zeolite-like carbon materials that exhibit well-resolved powder XRD patterns and very high surface area. The zeolite-like carbons are prepared via chemical vapor deposition (CVD) at 800 or 850 degrees C using zeolite beta as solid template and acetonitrile as carbon precursor. The zeolite-like structural ordering of the carbon materials is indicated by powder XRD patterns with at least two well-resolved diffraction peaks and TEM images that reveal well-ordered micropore channels. The carbons possess surface area of up to 3200 m2/g and pore volume of up to 2.41 cm3/g. A significant proportion of the porosity in the carbons (up to 76% and 56% for surface area and pore volume, respectively) is from micropores. Both TEM and nitrogen sorption data indicate that porosity is dominated by pores of size 0.6-0.8 nm. The carbon materials exhibit enhanced (and reversible) hydrogen storage capacity, with measured uptake of up to 6.9 wt % and estimated maximum of 8.33 wt % at -196 degrees C and 20 bar. At 1 bar, hydrogen uptake capacity as high as 2.6 wt % is achieved. Isosteric heat of adsorption of 8.2 kJ/mol indicates a favorable interaction between hydrogen and the surface of the carbons. The hydrogen uptake capacity observed for the zeolite-like carbon materials is among the highest ever reported for carbon (activated carbon, mesoporous carbon, CNTs) or any other (MOFs, zeolites) porous material.  相似文献   

9.
Spillover of hydrogen on nanostructured carbons is a phenomenon that is critical to understand in order to produce efficient hydrogen storage adsorbents for fuel cell applications. The spillover and interaction of atomic hydrogen with single-walled carbon nanotubes (SWNTs) is the focus of this combined theoretical and experimental work. To understand the spillover mechanism, very low occupancies (i.e., 1 and 2 H atoms adsorbed) on (5,0), (7,0), (9,0) zigzag (semiconducting) SWNTs and a (5,5) armchair (metallic) SWNT, with corresponding diameters of 3.9, 5.5, 7.0, and 6.8 A, were investigated. The adsorption binding energy of H atoms depends on H occupancy, tube diameter, and helicity (or chirality), as well as endohedral (interior) vs exohedral (exterior) binding. Exohedral binding energies are substantially higher than endohedral binding energies due to easier sp(2)-sp(3) transition in hybridization of carbon on exterior walls upon binding. A binding energy as low as -8.9 kcal/mol is obtained for 2H atoms on the exterior wall of a (5, 0) SWNT. The binding energies of H atoms on the metallic SWNT are significantly weaker (about 23 kcal/mol weaker) than that on the semiconductor SWNT, for both endohedral and exohedral adsorption. The binding energy is generally higher on SWNTs of larger diameters, while its dependence on H occupancy is relatively weak except at very low occupancies. Experimental results at 298 K and for pressures up to 10 MPa with a carbon-bridged composite material containing SWNTs demonstrate the presence of multiple adsorption sites based on desorption hysteresis for the spiltover H on SWNTs, and the experimental results were in qualitative agreement with the molecular orbital calculation results.  相似文献   

10.
有序中孔炭的电化学储氢性能   总被引:1,自引:0,他引:1  
将蔗糖、聚环氧乙烯-聚环氧丙烯-聚环氧乙烯三嵌段共聚物和硅源构成的复合物进行预炭化、炭化和除硅处理合成出有序中孔炭, 采用XRD、TEM、HRTEM和N2吸脱附等手段对其进行表征, 并将有序中孔炭制成电极开展恒流充放电储氢性能研究. 结果显示, 具有较高比表面积(720 m2·g-1)和孔容(0.86 cm3·g-1)的有序中孔炭材料的电化学储氢容量为70.1 mAh·g-1, 高于具有相对较低比表面积(610 m2·g-1)和孔容(0.66 cm3·g-1)的有序中孔炭储氢容量(64.1 mAh·g-1). 通过与单壁碳纳米管电极(25.9 mAh·g-1)的对比, 表明有序中孔炭具有良好的电化学储氢性能和更高的电化学活性.  相似文献   

11.
A single‐wall carbon nanotube functionalized by carboxylic groups (SWNT‐CA) was found to be adsorbed on an indium tin oxide (ITO) electrode by chemical interaction between carboxylic groups and the ITO surface. The adsorption experiments indicated that the narrow pH conditions (around pH 3.0) exist for its adsorption which is restricted by preparation of stable fluid dispersion (favorable at higher pH) and by the chemical interaction (favorable at lower pH). Atomic force microscopic (AFM) measurements suggest that fragmented SWNT‐CA are adsorbed, primarily lying on the surface. Electrochemical impedance analysis indicated that an electrochemical double layer capacitance of the SWNT‐CA/ITO electrode is considerably higher than that for the ITO electrode, suggesting that the interfacial area between the electrode surface and the electrolyte solution is enlarged by the SWNT‐CA layer. Pt particles were deposited as a catalyst on the bare ITO and SWNT‐CA‐coated ITO (SWNT‐CA/ITO) electrodes to give respective Pt‐modified electrodes (denoted as a Pt/ITO electrode and a Pt/SWNT‐CA/ITO electrode, respectively). The cathodic current for the Pt/SWNT‐CA/ITO electrode was 1.7 times higher than that for the Pt/ITO electrode at 0.0 V, showing that the Pt/SWNT‐CA/ITO electrode works more efficiently for O2 reduction at 0.0 V due to the SWNT‐CA layer. The enhancement by the SWNT‐CA layer is also effective for electrocatalytic proton reduction. It could be ascribable to the enlarged interfacial area between the electrode surface and the electrolyte solution.  相似文献   

12.
The characteristics of adsorption of 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether (NFE), a chlorofluorocarbon (CFC) replacement, onto six different activated carbon; preparations (three activated carbon fibers and three different-sized activated carbon particles) were investigated to evaluate the interaction between activated carbon surfaces and NFE. The amount of NFE adsorbed onto the three activated carbon fibers increased with increasing specific surface area and pore volume. The amount of NFE adsorbed onto the three different-sized-activated carbon particles increased with an increase in the particle diameter of the granular activated carbon. The differential heat of the NFE adsorption onto three activated carbon fibers depended on the porosity structure of the activated carbon fibers. The adsorption rate of NFE was also investigated in order to evaluate the efficiency of NFE recovery by the activated carbon surface. The Sameshima equation was used to obtain the isotherms of NFE adsorption onto the activated carbon fibers and different-sized-activated carbon particles. The rate constant k for NFE adsorption onto activated carbon fibers was larger for increased specific surface area and pore volume. The rate of NFE adsorption on activated carbons of three different particle sizes decreased with increasing particle diameter at a low initial pressure. The adsorption isotherms of NFE for the six activated carbons conformed to the Dubinin-Radushkevich equation; the constants BE(0) (the affinity between adsorbate and adsorbent) and W(0) (the adsorption capacity) were calculated. These results indicated that the interaction between the activated carbon and NFE was larger with the smaller specific surface area of the activated carbon fibers and with the smaller particle diameter of the different-sized-activated carbon particles. The degree of packing of NFE in the pores of the activated carbon fibers was greater than that in the pores of the granular activated carbons. Copyright 2000 Academic Press.  相似文献   

13.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

14.
The adsorption of atomic and molecular hydrogen on carbon-doped boron nitride nanotubes is investigated within the ab initio density functional theory. The binding energy of adsorbed hydrogen on carbon-doped boron nitride nanotube is substantially increased when compared with hydrogen on nondoped nanotube. These results are in agreement with experimental results for boron nitride nanotubes (BNNT) where dangling bonds are present. The atomic hydrogen makes a chemical covalent bond with carbon substitution, while a physisorption occurs for the molecular hydrogen. For the H(2) molecule adsorbed on the top of a carbon atom in a boron site (BNNT + C(B)-H(2)), a donor defect level is present, while for the H(2) molecule adsorbed on the top of a carbon atom in a nitrogen site (BNNT + C(N)-H(2)), an acceptor defect level is present. The binding energies of H(2) molecules absorbed on carbon-doped boron nitride nanotubes are in the optimal range to work as a hydrogen storage medium.  相似文献   

15.
The vacuum space inside carbon nanotubes offers interesting possibilities for the inclusion, transportation, and functionalization of foreign molecules. Using first-principles density functional calculations, we show that linear carbon-based chain molecules, namely, polyynes (C(m)H(2), m = 4, 6, 10) and the dehydrogenated forms C(10)H and C(10), as well as hexane (C(6)H(14)), can be spontaneously encapsulated in open-ended single-walled carbon nanotubes (SWNTs) with edges that have dangling bonds or that are terminated with hydrogen atoms, as if they were drawn into a vacuum cleaner. The energy gains when C(10)H(2), C(10)H, C(10), C(6)H(2), C(4)H(2), and C(6)H(14) are encapsulated inside a (10,0) zigzag-shaped SWNT are 1.48, 2.04, 2.18, 1.05, 0.55, and 1.48 eV, respectively. When these molecules come inside a much wider (10,10) armchair SWNT along the tube axis, they experience neither an energy gain nor an energy barrier. They experience an energy gain when they approach the tube walls inside. Three hexane molecules can be encapsulated parallel to each other (i.e., nested) inside a (10,10) SWNT, and their energy gain is 1.98 eV. Three hexane molecules can exhibit a rotary motion. One reason for the stability of carbon chain molecules inside SWNTs is the large area of weak wave function overlap. Another reason concerns molecular dependence, that is, the quadrupole-quadrupole interaction in the case of the polyynes and electron charge transfer from the SWNT in the case of the dehydrogenated forms. The very flat potential surface inside an SWNT suggests that friction is quite low, and the space inside SWNTs serves as an ideal environment for the molecular transport of carbon chain molecules. The present theoretical results are certainly consistent with recent experimental results. Moreover, the encapsulation of C(10) makes an SWNT a (purely carbon-made) p-type acceptor. Another interesting possibility associated with the present system is the direction-controlled transport of C(10)H inside an SWNT under an external field. Because C(10)H has an electric dipole moment, it is expected to move under a gradient electric field. Finally, we derive the entropies of linear chain molecules inside and outside an open-ended SWNT to discuss the stability of including linear chain molecules inside an SWNT at finite temperatures.  相似文献   

16.
High surface area microporous adsorbents are often proposed as potential hydrogen storage materials, although typically at 77?K and less than 5?MPa. In this study, we focus on conditions more suitable for automotive applications by investigating the storage capacities of microporous materials at 298?K and at pressures up to 50?MPa. In an effort to derive trends within and across material classes, we examined a wide range of materials with varying microstructures including the activated carbons AX-21, KUA-5, and MSC-30; a zeolite templated carbon; a hypercrosslinked polymer; and the Metal Organic Frameworks MOF-177, IRMOF-20, MIL-53, ZIF-8, and Cu3(btc)2. The peak excess adsorption of these materials ranged from 0.8–1.8?wt.%, although many did not reach their maximum capacity even at high pressures. However, the total volumetric storage gains over compressed hydrogen gas were quite low and, in many cases, negative. In addressing ambient temperature adsorption at significantly higher pressures than previously reported, our data confirms and extends the range of validity of several existing DFT calculations. Furthermore, our data suggest that, for both activated carbons and MOFs, factors other than specific surface area govern ambient temperature adsorption capacity. Contrary to some reports, the high fractions of sub-nanometer pores in some of the investigated MOFs did not appear to enhance the excess adsorption even at high pressures. For on-board applications with ambient temperature storage, significant enhancements to the attractive force at the materials’ surface are required, beyond merely increasing specific surface area, or for MOFs, tuning of pore sizes.  相似文献   

17.
Purified multi-walled carbon nanotubes (PMWCNTs), activated charcoal and graphitized carbon black (Carbopack B) were used as column packing materials to compare their separation ability and other gas chromatographic behavior for aromatic hydrocarbons, alkanes, halogenated hydrocarbons, alcohols, ketones, esters, and ethers. The results show that PMWCNTs can be an excellent gas chromatographic packing material. Compared to Carbopack B with the same surface area, PMWCNTs had a stronger retention ability, a more homogenous surface and smaller theoretical plate numbers. Polar compounds can present symmetric peaks on PMWCNTs. PMWCNTs were found to be an interesting alternative adsorbent to activated charcoal and Carbopack B as gas chromatographic column packing material for volatile compounds, especially those with relatively low boiling points.  相似文献   

18.
氢气在碳纳米管基材料上的吸附-脱附特性   总被引:16,自引:0,他引:16  
利用高压容积法测定多壁碳纳米管(MWCNTs)及钾盐修饰的相应体系(K+-MWCNTs)的储氢容量,并用程序升温脱附(TPD)方法表征研究氢气在MWCNTs基材料上的吸附-脱附特性.结果表明,在经纯化MWCNTs上,室温、9.0 MPa实验条件下氢的储量可达1.51%(质量分数);K+盐对MWCNTs的修饰对增加其储氢容量并无促进效应,但相应化学吸附氢物种的脱附温度有所升高;K+的修饰也改变了MWCNTs表面原有的疏水性质.在低于723 K的温度下,H2/MWCNTs体系的脱附产物几乎全为氢气;773 K以上高温脱附产物不仅含H2,也含有CH4、C2H4、C2H2等C1/C2烃混合物;H2/K+-MWCNTs储氢试样的脱附产物除占主体量的H2及少量C1/C2烃混合物外,还含水汽,其量与吸附质H2源水汽含量密切相关.H2在碳纳米管基材料上吸附兼具非解离 (即分子态) 和解离(即原子态)两种形式.  相似文献   

19.
The dispersion process of single-wall carbon nanotube (SWNT) by using sodium dodecylbenzene sulfonate (NaDDBS) was studied by means of surface tension measurements, ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), and transmission electron spectroscopy (TEM). The critical micelle concentration (CMC) and the concentration where the surface tension begins to drop increase by the presence of SWNT. The isotherm of NaDDBS amount adsorbed on SWNT shows the plateau region at 0.2-6 mM and the saturated region above 40 mM. The external surface of SWNT bundle is fully covered with adsorbed NaDDBS at the plateau region, showing that SWNTs can be dispersed with the bundle form. On the other hand, SWNTs are dispersed in individual tubes at the saturated region, where the adsorption amount corresponds to coating of individual tube surfaces with NaDDBS. This dispersion state was confirmed by SEM and TEM observations. The effect of the dispersion state of SWNTs on radial breathing mode in Raman spectrum gave inherent peak shifts, being the in situ evidences on the step-wise dispersion mechanism of the SWNT bundle to the individual tubes.  相似文献   

20.
Storing molecular hydrogen in porous media is one of the promising avenues for mobile hydrogen storage. In order to achieve technologically relevant levels of gravimetric density, the density of adsorbed H2 must be increased beyond levels attained for typical high surface area carbons. Here, we demonstrate a strong correlation between exposed and coordinatively unsaturated metal centers and enhanced hydrogen surface density in many framework structures. We show that the MOF-74 framework structure with open Zn(2+) sites displays the highest surface density for physisorbed hydrogen in framework structures. Isotherm and neutron scattering methods are used to elucidate the strength of the guest-host interactions and atomic-scale bonding of hydrogen in this material. As a metric with which to compare adsorption density with other materials, we define a surface packing density and model the strength of the H(2-)surface interaction required to decrease the H(2)-H(2) distance and to estimate the largest possible surface packing density based on surface physisorption methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号