首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A pyrrole adduct of 5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-21-carbaporphyrin [(H,pyr)OCPH]H(2) reacted with sodium ethanolate to yield 5,20-diphenyl-10,15-di(p-tolyl)-3-ethoxy-3-(2'-pyrrol)-2-oxa-21-carbaporphyrin [(EtO,pyr)OCPH]H(2). Subsequently, "true" O-confused oxaporphyrin with a pendant pyrrole ring [(pyr)OCPH]H was formed by the addition of acid to [(EtO,pyr)OCPH]H(2), which triggered an ethanol elimination. In the course of this process, the tetrahedral-trigonal rearrangements originated at the C(3) atom. Insertion of zinc(II), cadmium(II), and nickel(II) into [(pyr)OCPH]H yielded [(pyr)OCPH]Zn(II)Cl, [(pyr)OCPH]Cd(II)Cl, and [(pyr)OCP]Ni(II). The formation of [(pyr)OCP]Ni(II) was accompanied by the C(21)H dehydrogenation step. The nickel(II) ion of [(pyr)OCP]Ni(II), coordinated to a dianionic macrocyclic ligand, is bound by three pyrrolic nitrogens and a trigonally hybridized C(21) atom of the inverted furan. The pyrrole-appended O-confused carbaporphyrin acts as a monoanionic ligand toward zinc(II) and cadmium(II) cations. Three nitrogen atoms and the C(21)H fragment of the inverted furan occupy equatorial positions. In (1)H NMR spectra, the unique inner C(21)H resonances of the inverted furan ring are located at 0.15 ppm for [(pyr)OCPH]Zn(II)Cl, and at 0.21 ppm for [(pyr)OCPH]Cd(II)Cl. The proximity of the furan fragment to the metal ion induces direct scalar couplings between the spin-active nucleus of the metal ((111/113)Cd) and the adjacent (1)H nucleus. The interaction of the metal ion and C(21)H was also reflected by significant changes in carbon chemical shifts ([(pyr)OCPH]Zn(II)Cl, 78.3 ppm; [(pyr)OCPH]Cd(II)Cl, 81.4 ppm; the free base, 101.3 ppm). The density functional theory (DFT) has been applied to model the molecular structures of zinc(II) and cadmium(II) complexes of O-confused oxaporphyrin with an appended pyrrole ring. The Cd...C(21) distance in the optimized structure exceeds the typical Cd-C bond lengths, but is much shorter than the corresponding van der Waals contact.  相似文献   

2.
[Reaction: see text]. A condensation of 2,4-bis(phenylhydroxymethyl)furan with pyrrole and p-toluylaldehyde in the presence of ethanol formed 5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-3-ethoxy-3-hydro-21-carbaporphyrin [(H,EtO)OCPH]H2. The new carbaporphyrinoid has 1H NMR features of an aromatic molecule, including the upfield shift of the inner H(21) atom (-5.48 ppm). Addition of acid removes the ethoxy substituent and converts [(H,EtO)OCPH]H2 into the dication of "true" O-confused oxaporphyrin {[(H)OCPH]H3}2+ via an exocyclic C(3)-O bond cleavage followed by an elimination of the ethoxy group as determined by 1H NMR. Addition of ethanol, water, or pyrrole converts {[(H)OCPH]H3]2+ into [(H,EtO)OCPH]H2, [(H,OH)OCPH]H2, or pyrrole appended O-confused porphyrin [(H,pyrrole)OCPH]H2, respectively. The reaction of [(H,OEt)OCPH]H2 with silver(I) acetate yields a stable Ag(III) complex [(H,OEt)OCP]AgIII substituted at the C(3) position by the ethoxy group and hydrogen. Coordination through the nitrogen donors is reflected by the presence of 107/109Ag scalar splitting seen for the selected -H pyrrolic signals. Addition of TFA to [(H,OEt)OCP]AgIII produces a weakly aromatic O-confused porphyrin complex {[(H)OCP]AgIII}+. In the course of this reversible process the tetrahedral-trigonal rearrangements originate at the C(3) atom but extend its consequences on the whole structure. Insertion of silver into the hydroxy analogue of [(H,OEt)OCPH]H2, i.e., [(H,OH)OCPH]H2, was accompanied by ligand oxidation, yielding carbaporpholactone which contains the lactone functionality instead of the regular furan moiety embedded in the carbaporphyrin ligand of [(O)OCP]AgIII. The structure was determined by X-ray crystallography. The macrocycle is only slightly distorted from planarity, and silver(III) is located in the NNNC plane.  相似文献   

3.
Alkylidene-bis(2-aminopyrimidines) (pyr2Cx, x = 2-5) are useful ligands to interact with Ag(I) yielding discrete metallocycles. Crystal structures of the [(pyr2C2)Ag(NO3)]2 and [(H-pyr2C4)Ag(NO3)2]2 have been isolated where each macrocyclic moiety interacts with their surroundings through weak interactions, yielding 3D discrete structures, On the other hand, the solution study shows that the equilibrium constants for the formation of Ag(pyr2Cx)+ complexes are higher than the literature values for Ag(I) complexes with single pyrimidines, although the differences could be explained by invoking the solid-state structures of the Ag(I)-pyr2Cx complexes.  相似文献   

4.
Coordinating properties of acetoxybenziporphyrin, (TPBPOAc)H, have been investigated for a number of metal ions. Insertion of Ni, Pd, and Fe results in the cleavage of the acetoxy group leading to complexes (TPBPO)Ni(II), (TPBPO)Pd(II), and (TPBPO)Fe(III)X containing a M-O bond. No cleavage is observed with Zn(II) and Cd(II), which form complexes (TPBPOAc)M(II)Cl, where M = Zn, Cd. (TPBPO)Ni(II) can also be obtained from the dication of hydroxybenziporphyrin, [(TPBPOH)H(3)]Cl(2), which is prepared by acid hydrolysis of the acetoxy compound. The diamagnetic (TPBPO)Ni(II) can be transformed into the paramagnetic (TPBPOAc)Ni(II)Cl in a reaction with acetyl chloride. X-ray structures have been determined for (TPBPO)Pd(II) and (TPBPOAc)Zn(II)Cl. In the palladium species, the phenolate moiety forms a strong bond to the Pd ion and an unusual interaction geometry is observed, enforced by the macrocyclic environment. Association of a TFA molecule to the phenolic oxygen does not cause significant structural changes in the (TPBPO)Pd(II) molecule. In (TPBPOAc)Zn(II)Cl, the metal ion weakly interacts with the phenolic fragment. The paramagnetic Fe(III) complexes, (TPBPO)Fe(III)X, have been investigated with (1)H NMR spectroscopy. The observed spectral patterns are consistent with the presence of a high-spin Fe(III) center and pi delocalization of spin density onto the phenoxide fragment. Each of the compounds (TPBPO)Fe(III)X exists in solution as a mixture of two isomers, which for X = I are shown to remain in a temperature-dependent equilibrium. The observed isomerism results from two nonequivalent orientations of the axial halide with respect to the puckered macrocyclic ring.  相似文献   

5.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

6.
Insertion of iron(II) into methylated derivatives of N-confused porphyrins 2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrin (MeCTPPH)H, 2-aza-5,10,15,20-tetraphenyl-21-methyl-21-carbaporphyrin (CTPPMe)H2, and 2-aza-2-methyl-5,10,15,20-tetraphenyl-21-methyl-21-carbaporphyrin (MeCTPPMe)H yielded N- or C-methylated high-spin iron(II) complexes (MeCTPPH)Fe(II)Br, (HCTPPMe)Fe(II)Br, and (MeCTPPMe)Fe(II)Br. One electron oxidation of (Me-CTPPH)Fe(II)Br using Br2, accompanied by deprotonation of a C(21)-H(21) fragment and formation of an Fe-C(21) bond, produces an intermediate-spin, five-coordinate iron(III) complex (MeCTPP)Fe(III)Br. Simultaneously, a high-spin complex [(MeCTPPH)Fe(III)Br]+ was formed which preserved the side-on interaction between the metal ion and the inverted pyrrole ring. &[(MeCTPPH)Fe(III)Br]+ was also obtained by titration of (MeCTPP)FeIIIBr with TFA due to the C(21) protonation. A titration of (HCTPPMe)Fe(II)Br and (MeCTPPMe)Fe(II)Br with Br2 yielded solely corresponding high-spin iron(III) species [(HCTPPMe)Fe(III)Br+ and [(MeCTPPMe)Fe(III)Br+. Dioxygen reacts cleanly with (MeCTPPH)Fe(II)Br carbaporphyrin to form solely (MeCTPP)Fe(III)Br. The 1H NMR spectra of paramagnetic iron(II) and iron(III) complexes were examined. The characteristic patterns of pyrrole, C-methyl, and N-methyl resonances were found diagnostic of the ground electronic state of iron and the coordinating nature of the N-confused pyrrole. The characteristic C-Me resonances occur in a unique window (520-420 ppm) for iron(III) C-methylated N-confused porphyrins which remains in contrast with relatively small values found for iron(II) C-methylated derivatives (50-80 ppm).  相似文献   

7.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

8.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

9.
Insertion of nickel(II), zinc, cadmium, or silver(III) into both macrocyclic crevices of 2,2'-o-xylene-bis(5,10,15,20-tetrakis(p-tolyl)-2-aza-21-carbaporphyrin) results in homometallic dimeric complexes which were isolated and characterized by NMR, UV-vis, mass spectrometry, and cyclic voltammetry. The 1H NMR study of these systems at low temperatures (203-233 K) allowed determination of most stable conformers with respect to a rotational freedom around the xylene bridge. An unfolded conformation for the dicationic bis(silver(III)) complex was determined on the basis of 2D nuclear Overhauser effect spectrometry experimentation. A mixture of nonequally populated diastereomers is observed for bis(zinc) and bis(cadmium) complexes due to a possibility of two different orientations of the apical anionic ligands with respect to the bridge. In a reaction of 5,10,15,20-tetrakis(p-tolyl)-2-aza-21-carbaporphyrinato nickel(II) with 2-(o-bromoxylene)-5,10,15,20-tetrakis(p-tolyl)-2-aza-21-carbaporphyrin in the presence of a proton scavenger, two isomeric bis(N-confused porphyrin) complexes with one subunit "empty" and the other metalated by nickel(II) were obtained. In the product 10, the o-xylene links external nitrogens of the subunits while product 11 consists of the xylene bridge between external nitrogen of the nonmetalated subunit and internal carbon of the fragment containing a nickel(II) ion. The products were characterized by mass spectrometry, UV-vis, NMR, and, in the case of complex 11, also by X-ray crystallographic analysis (space group P1, a =17.007(3), b = 18.130(3), c = 18.797(2) A, alpha = 105.856(13) degrees, beta = 107.447(13) degrees, gamma = 98.818(15) degrees, V = 5141.1(15) A3, Z = 2). Insertion of zinc or silver(III) into an empty crevice of 10 resulted in heterometallic zinc-nickel(II) or silver(III)-nickel(II) complexes 12 or 13, respectively, which were characterized by NMR, UV-vis, and cyclic voltammetry. The subunits in the bis(porphyrin) systems retain spectroscopic and redox properties typical for monomeric complexes.  相似文献   

10.
Gold(I), silver(I), and copper(I) phosphine complexes of 6,9,12,15,18-pentaaryl[60]fullerides 1a and 1b, namely, [(4-MeC(6)H(4))(5)C(60)]Au(PPh(3)) (2a), [(4-t-BuC(6)H(4))(5)C(60)]Au(PPh(3)) (2b), [(4-MeC(6)H(4))(5)C(60)]Ag(PCy(3)) (3a), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PPh(3)) (3b), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PCy(3)) (3c), [(4-MeC(6)H(4))(5)C(60)]Cu(PPh(3)) (4a), and [(4-t-BuC(6)H(4))(5)C(60)]Cu(PPh(3)) (4b), have been synthesized and characterized spectroscopically. All complexes except for 3c were also characterized by single-crystal X-ray diffraction. Several coordination modes between the cyclopentadienyl ring embedded in the fullerene and the metal centers are observed, ranging from η(1) with a slight distortion toward η(3) in the case of gold(I), to η(2)/η(3) for silver(I), and η(5) for copper(I). Silver complexes 3a and 3b are rare examples of crystallographically characterized Ag(I) cyclopentadienyls whose preparation was possible thanks to the steric shielding provided by fullerides 1a and 1b, which stabilizes these complexes. Silver complexes 3a and 3b both display unexpected coordination of the cyclopentadienyl portion of the fulleride anion with Ag(I). DFT calculations on the model systems (H(5)C(60))M(PH(3)) and CpMPH(3) (M = Au, Ag, or Cu) were carried out to probe the geometries and electronic structures of these metal complexes.  相似文献   

11.
Coordination of sigma-aryl carbanions by chloroiron(II) 5,20-ditolyl-10,15-diphenyl-21-oxaporphyrin (ODTDPP)Fe(II)Cl has been followed by (1)H NMR spectroscopy. Addition of pentafluorophenyl Grignard reagent (C(6)F(5))MgBr to the toluene solution of (ODTDPP)Fe(II)Cl in the absence of dioxygen at 205 K resulted in the formation of the high-spin (ODTDPP)Fe(II)(C(6)F(5)). The titration of (ODTDPP)Fe(II)Cl with a solution of (C(6)H(5))MgBr carried at 205 K yields a rare six-coordinate species which binds two sigma-aryl ligands [(ODTDPP)Fe(II)(C(6)H(5))(2)](-). Warming of the [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) solution above 270 K results in the decomposition to mono-sigma-phenyliron species (ODTDPP)Fe(II)(C(6)H(5)). Controlled oxidation of [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) with Br(2) affords (ODTDPP)Fe(III)(C(6)H(5))Br, which demonstrates a typical (1)H NMR pattern of low-spin sigma-aryl iron(III) porphyrin. The considered oxidation mechanism involves the (ODTDPP)Fe(III)(C(6)H(5))(2) species, which is readily reduced to the iron(I) 21-oxaporphyrin, followed by oxidation with Br(2) and replacement of one bromide anion by aryl substituent. The (1)H NMR spectra of paramagnetic iron complexes have been examined in detail. Functional group assignments have been made with the use of selective deuteration. The peculiar (1)H NMR spectral features of [(ODTDPP)Fe(II)(p-CH(3)C(6)H(4))(2)](-) (sigma-p-tolyl: ortho, 30.8; meta, 53.6; para-CH(3), 42.1; furan: -16.0; beta-H pyrrole: -27.5, -34.3, -41.8 ppm, at 205 K) are without a parallel to any iron(II) porphyrin or heteroporphyrin and indicate a profound alteration of the electronic structure of iron(II) porphyrin upon the coordination of two sigma-aryls.  相似文献   

12.
Ten polymeric silver(I) double salts containing embedded acetylenediide: [(Ag2C2)2(AgCF3CO2)9(L1)3] (1), [(Ag2C2)2(AgCF3CO2)10(L2)3]H2O (2), [(Ag2C2)(AgCF3CO2)4(L3)(H2O)]0.75 H2O (3), [(Ag2C2)(1.5)(AgCF3CO2)7(L4)2] (4), [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)] (5), [(Ag2C2) (AgC2F5CO2)7(L1)3(H2O)] (6), [(Ag2C2)(AgCF3CO2)7(L1)3(H2O)]2 H2O (7), [(Ag2C2)(AgC2F5CO2)6(L3)2] (8), [(Ag2C2)2(AgC2F5CO2)12(L4)2(H2O)4]H2O (9), and [(Ag2C2)(AgCF3CO2)6(L3)2(H2O)]H2O (10) have been isolated by varying the types of betaines, the perfluorocarboxylate ligands employed, and the reaction conditions. Single-crystal X-ray analysis has shown that 1-4 all have a columnar structure composed of fused silver(I) double cages, with C2(2-) species embedded in its stem and an exterior coat comprising anionic and zwitterionic carboxylates. For 5 and 6, single silver(I) cages are linked into a beaded chain through both types of carboxylate ligands. In 7, two different coordination modes of L1 connect the silver(I) polyhedra into a chain. For 8, the mu(2)-O,O' coordination mode of L3 connects the silver(I) double cages into a chain. Compound 9 exhibits a two-dimensional architecture generated from the cross-linkage of double cages by C2F5CO2-, L4, and [Ag2(C2F5CO2)2] units. Similar to 9, 10 is also a two-dimensional structure, which is formed by connecting the chains of linked double cages through [Ag2(CF3CO2)2] bridging.  相似文献   

13.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

14.
Palladium(II), platinum(II), ruthenium(III) and iridium(III) complexes of general stoichiometry [PdL]Cl(2), [PtL]Cl(2), [Ru(L)Cl(2)]Cl and [Ir(L)Cl(2)]Cl are synthesized with a tetradentate macrocyclic ligand, derived from 2,6-diaminopyridine with 3-ethyl 2,4-pentanedione. Ligand was characterized on the basis of elemental analyses, IR, mass, and (1)H NMR and (13)C NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, mass, electronic spectral techniques and thermal studies. The value of magnetic moments indicates that all the complexes are diamagnetic except Ru(III) complex which shows magnetic moments corresponding its one unpaired electron. The macrocyclic ligand and all its metal complexes were also evaluated in vitro against some plant pathogenic fungi and bacteria to assess their biocidal properties.  相似文献   

15.
The cobalt(III) complexes, [(NH3)5CoBr]2+ and [(NH3)5CoI]2+ are reduced by Ti(II) solutions containing Ti(IV), generating nearly linear (zero-order) profiles that become curved only during the last few percent of reaction. Other Co(III)-Ti(II) systems exhibit the usual exponential traces with rates proportional to [Co(III)]. Observed kinetics of the biphasic catalyzed Ti(II)-Co(III)Br and Ti(II)-Co(III)I reactions support the reaction sequence: [Ti(II)(H20)n]2+ + [Ti(IV)F5]- (k1)<==>(k -1) [Ti(II)(H2O)(n-1)]2+ + [(H2O)Ti(IV)F5]-, [Ti(II)(H2O)(n-1)]2+ + Co(III) (k2)--> Ti(III) + Co(II) with rates determined mainly by the slow Ti(IV)-Ti(II) ligand exchange (k1 = 9 x 10(-3) M(-1) s(-1) at 22 degrees C). Computer simulations of the catalyzed Ti(II)-Co(III) reaction in perchlorate-triflate media yield relative rates for reduction by the proposed active [Ti(II)(H2O)(n-1)]2+ intermediate; k(Br)/k(I) = 8.  相似文献   

16.
The synthesis and structures of chiral N-heterocyclic carbene (NHC)-N-donor complexes of silver(I) and palladium(II) are reported. The X-ray structure of an NHC-imine silver(I) complex [((nPr)CN(CHPh))AgBr](2) exhibits an Ag(2)Br(2) dimer motif where the imine group is not coordinated to the silver atom. Reaction between 2 and [PdCl(2)(MeCN)(2)] gives the palladium(II) complex [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) that contains a chelating NHC-imine ligand as shown by single-crystal X-ray diffraction. Slow hydrolysis of related complexes [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) and [(kappa(2)-((Ph)(2)CH)CN(CHPh))PdCl(2)](4) using triethylammonium chloride and water lead to the precipitation of single crystals of insoluble NHC-amino palladium(II) complexes [(kappa(2)-(nPr)CN(H(2)))PdCl(2)](6) and [(kappa(2)-((Ph)(2)CH)CN(H(2)))PdCl(2)](7), respectively. In the solid state, complexes 6 and 7 both exhibit intermolecular hydrogen bonding between chlorine and an amino-hydrogen atom resulting in an infinite chain structure. Substitution of an amino hydrogen for an ethyl group gives the soluble complex [(kappa(2)-(iPr)CN((H)Et))PdCl(2)](12). Reaction between two equivalents of 2 and [PdCl(2)(MeCN)(2)] gives the di-NHC complex [(kappa(1)-(nPr)CN(CHPh))(2)PdCl(2)](5) that does not contain a coordinated imine as shown by single crystal X-ray diffraction. Conproportionation between 5 and an equivalent of [PdCl(2)(MeCN)(2)] to does not occur at temperatures up to 100 degrees C in CD(3)CN.  相似文献   

17.
Addition of the carbene 1,3-dimesitylimidazol-2-ylidene (IMes) to a toluene solution of Ag[closo-CB(11)H(12)] results in the formation of the complex [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)], the anionic component of which contains two silver(I) centers bridged by two carboranes in addition to one terminally bound carborane on each metal, in the solid-state. Comparison of the observed (11)B[(1)H] NMR chemical shifts of [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)] or Ag[closo-CB(11)H(12)] with [NBu(4)][closo-CB(11)H(12)] in CD(2)Cl(2) demonstrates that the silver ion interacts significantly with the cage in solution. Theoretical investigations using the ab initio/GIAO/NMR method of [closo-CB(11)H(12)](-) and Na[closo-CB(11)H(12)] as model geometries for the silver salts support experimental evidence for these Ag...[BH] interactions in solution.  相似文献   

18.
Oxidation and oxygenation of (HCTPPH)Fe(II)Br an iron(II) complex of 2-aza-5,10,15,20-tetraphenyl-21-carbaporphyrin (CTPPH)H2 have been followed by 1H and 2H NMR spectroscopy. Addition of I2 or Br2 to the solution of (HCTPPH)Fe(II)Br in the absence of dioxygen results in one-electron oxidation yielding [(HCTPPH)Fe(III)Br]+. One electron oxidation with dioxygen, accompanied by deprotonation of a C(21)H fragment and formation of an Fe-C(21) bond, produces an intermediate-spin, five-coordinate iron(III) complex (HCTPP)Fe(III)Br. In the subsequent step an insertion of the oxygen atom into the preformed Fe(III)-C(21) bond has been detected to produce [(CTPPO)Fe(III)Br]-. Protonation at the N2 atom affords (HCTPPO)Fe(III)Br. The considered mechanism of (HCTPPH)Fe(II)Br oxygenation involves the insertion of dioxygen into the Fe-C bond. The 1H NMR and 2H NMR spectra of paramagnetic iron(III) complexes were examined. Functional group assignments have been made with use of selective deuteration. The characteristic patterns of pyrrole and 2-NH resonances have been found diagnostic of the ground electronic state of iron and the donor nature localized at C(21) center as exemplified by the 1H NMR spectrum of intermediate-spin (HCTPP)Fe(III)Br: beta-H 7.2, -10.6, -19.2, -20.6, -23.2, -24.9, -43.2; 2-NH -76.6 (ppm, 298 K). The structures of two compounds (HCTPP)Fe(III)Br and (HCTPPO)Fe(III)Br, were determined by X-ray diffraction studies. In the first case, the iron(III) is five-coordinate with bonds to three pyrrole nitrogen atoms (Fe-N distances: 1.985(8), 2.045(7), 2.023(8) A), and the pyrrolic trigonal carbon (Fe-C: 1.981(8) A). The iron(III) of (HCTPPO)Fe(III)Br forms bonds to three pyrrole nitrogen atoms (Fe-N distances 2.104(5), 2.046(5), 2.102(5) A). The Fe-O 2.041(5) A and Fe-C(21) 2.192(5) A distances suggests a direct interaction between the iron center and the pi electron density on the carbonyl group in a eta2 fashion.  相似文献   

19.
Ayers AE  Dias HV 《Inorganic chemistry》2002,41(12):3259-3268
Syntheses of halide derivatives of germanium(II) and tin(II) aminotroponiminate (ATI) complexes and their silver salt metathesis reactions have been investigated. The treatment of GeCl(2) x (1,4-dioxane), SnCl(2), or SnI(2) with [(n-Pr)(2)ATI]Li in a 1:1 molar ratio affords the corresponding germanium(II) or tin(II) halide complex [(n-Pr)(2)ATI]MX (where [(n-Pr)(2)ATI](-) = N-(n-propyl)-2-(n-propylamino)troponiminate; M = Ge or Sn; X = Cl or I). As usually expected, [(n-Pr)(2)ATI]GeCl and [(n-Pr)(2)ATI]SnCl undergo rapid metathesis with CF(3)SO(3)Ag, leading to trifluoromethanesulfonate salts, [[(n-Pr)(2)ATI]Ge][SO(3)CF(3)] and [[(n-Pr)(2)ATI]Sn][SO(3)CF(3)], and silver chloride. However, when the silver source [HB(3,5-(CF(3))(2)Pz)(3)]Ag(eta(2)-toluene) is used, rather than undergoing metathesis, very stable 1:1 adducts [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Ge(Cl)[(n-Pr)(2)ATI] and [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(Cl)[(n-Pr)(2)ATI] are formed (where [HB(3,5-(CF(3))(2)Pz)(3)](-) = hydrotris(3,5-bis(trifluoromethyl)pyrazolyl)borate). The use of the iodide derivative [(n-Pr)(2)ATI]SnI did not change the outcome either. All new compounds have been characterized by multinuclear NMR spectroscopy and X-ray crystallography. The Ag-Ge and Ag-Sn bond distances of [HB(3,5-(CF(3))(2)Pz)(3)]Ag<-- Ge(Cl)[(n-Pr)(2)ATI], [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(Cl)[(n-Pr)(2)ATI], and [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(I)[(n-Pr)(2)ATI] are 2.4142(6), 2.5863(6), and 2.5880(10) A, respectively. A convenient route to [(n-Pr)(2)ATI]H is also reported.  相似文献   

20.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号