首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydroboration of trialkyn-1-yl(organo)silanes with one equivalent and two equivalents of 9-borabicyclo[3.3.1]nonane, 9-BBN afford dialkyn-1-ylsilanes and alkyn-1-ylsilanes, respectively. The alkyn-1-ylsilane derivatives are stable at room temperature and can be store under dry argon for prolong period of time. These compounds are attractive materials for further rearrangements to afford novel 1-silacyclobutene derivatives bearing Si-alkenyl or Si-alkynyl functionalities. The hydroboration reaction is well controlled by the Si-R1 function, i.e., the starting silanes with R1 = Ph selectively afford hydroboration of one Si-C≡C bond with one equivalent of 9-BBN, leaving the other two functionalities untouched. Under mild reaction conditions (25°C), the starting silanes with R1 = Me lead to mixture containing dialkyn-1-ylsilane, alkyn-1-ylsilane and their respective 1-silacyclobutene derivatives. All new compounds are sensitive towards air and moisture and were studied by multinuclear magnetic resonance spectroscopy (1H, 13C, 11B, 29Si NMR) in solution.  相似文献   

2.
The synthesis and characterization of novel cis-1,2-disilylenylethene [cis-LSi{C(Ph)=C(H)}SiL] (2; L=PhC(NtBu)(2)) and a singlet delocalized biradicaloid [LSi(μ(2)-C(2)Ph(2))(2)SiL] (3) are described. Compound 2 was prepared by the reaction of [{PhC(NtBu)(2)}Si:](2) (1) with one equivalent of PhC[triple chemical bond]CH in toluene. Compound 3 was synthesized by the reaction of 1 with two equivalents of PhC[triple chemical bond]CPh in toluene. The results suggest that the reaction proceeds through an [LSi{C(Ph)==C(Ph)}SiL] intermediate, which then reacts with another molecule of PhC[triple chemical bond]CPh to form 3. Compounds 2 and 3 have been characterized by X-ray crystallography and NMR spectroscopy. X-ray crystallography and DFT calculations of 3 show that the singlet biradicals are stabilized by the amidinate ligand and the delocalization within the "Si(μ(2)-C(2)Ph(2))(2)Si" six-membered ring.  相似文献   

3.
An unprecedented, intramolecular metal-to-metal silyl ligand migration reaction has been discovered in a series of phosphido-bridged iron-platinum complexes and which may be triggered by an external nucleophile. Thus, reaction of solutions of [(OC)3-(R1/3Si)Fe(mu-PR2R3)Pt(1,5-COD) (1a R1 = OMe, R2 = 3 = Ph; 1b R1 = OMe, R2 = R3 = Cy; 1c R1 = Ph, R2 = R3 = Ph; 1d R1 = Ph, R2 = R3 = Cy; 1e R1 = Ph, R1 = H, R3 = Ph) in CH2Cl2 with CO rapidly afforded the corresponding complexes [(OC)4Fe(mu-PR2R3)Pt(SiR1/3)-(CO)] (2a-e) in which the silyl ligand has migrated from Fe to Pt, while two CO ligands have been ligated, one on each metal. When 1a or 1c was slowly treated with two equivalents of tBuNC at low temperature, quantitative displacement of the COD ligand was accompagnied by silyl migration from Fe to Pt and coordination of an isonitrile ligand to Fe and to Pt to give [(OC)3-(tBuNC)Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)] (3a) and [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[SiPh3](CNtBu)] (3c). Reaction of 2a with one equivalent of tBuNC selectively led to substitution of the Pt-bound CO to give [(OC)4-Fe(mu-PCy2)Pt[Si(OMe)3](CNtBu)] (4b), which reacted with a second equivalent of tBuNC to give [(OC)4Fe(mu-PCy2)-Pt[Si(OMe)3](CNtBu)2] (5b) in which the metal-metal bond has been cleaved. Opening of the Fe-Pt bond was also observed upon reaction of 3a with tBuNC to give [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)2] (6). The silyl ligand migrates from Fe, in which it is trans to mu-PR2R3 in all the metal-metal-bonded complexes, to a position cis to the phosphido bridge on Pt. However, in 5a,b and 6 with no metal-metal bond, the Pt-bound silyl ligand is trans to the phosphido bridge. The intramolecular nature of the silyl migration, which may be formally viewed as a redox reaction, was established by a cross-over experiment consisting of the reaction of 1a and 1d with CO; this yielded exclusively 2a and 2d. The course of the silyl-migration reaction was found to depend a) on the steric properties of the -SiR1/3 ligand, and for a given mu-PR2R3 bridge (R2 = R3 = Ph), the migration rate decreases in the sequence Si(OMe)3> SiMe2Ph> SiMePh2>SiPh3; b) on the phosphido bridge and for a given silyl ligand (R1 = OMe), the migration rate decreases in the order mu-PPh2 > mu-PHCy; c) on the external nucleophile since reaction of 1c with two equivalents of P(OMe)3, P(OPh)3 or Ph2PCH2C(O)Ph led solely to displacement of the COD ligand with formation of 11a-c, respectively, whereas reaction with two equivalents of tBuNC gave the product of silyl migration 3c. Reaction of [(OC)3-[(MeO)3Si]Fe(mu-PPh2)Pt(PPh3)2] (7a) with tBuNC (even in slight excess) occurred stereoselectively with replacement of the PPh3 ligand trans to mu-PPh2, whereas reaction with CO led first to [(OC)3((MeO)3Si)Fe(mu-PPh2)Pt(CO)-(PPh3)] (8a), which then isomerized to the migration product [(OC)4Fe(mu-PPh2)Pt[Si(OMe)3](PPh3)] (9a). Most complexes were characterized by elemental analysis, IR and 1H, 31P, 13C, and 29Si NMR spectroscopy, and in five cases by X-ray diffraction.  相似文献   

4.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

5.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

6.
The acid-base reactions between the rare-earth metal (Ln) tris(ortho-N,N-dimethylaminobenzyl) complexes [Ln(CH2C(H4NMe2-o)3] with one equivalent of the silylene-linked cyclopentadiene-amine ligand (C5Me4H)SiMe2NH(C6H2Me3-2,4,6) afforded the corresponding half-sandwich aminobenzyl complexes [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Ln(CH2C6H4NMe2-o)(thf)] (2-Ln) (Ln=Y, La, Pr, Nd, Sm, Gd, Lu) in 60-87 % isolated yields. The one-pot reaction between ScCl(3) and [Me2Si(C5Me4)(NC6H2Me3-2,4,6)]Li2 followed by reaction with LiCH2C6H4NMe2-o in THF gave the scandium analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Sc(CH2C6H4NMe2-o)] (2-Sc) in 67 % isolated yield. 2-Sc could not be prepared by the acid-base reaction between [Sc(CH2C6H4NMe2-o)3] and (C5Me4H)SiMe2NH(C6H2Me3-2,4,6). These half-sandwich rare-earth metal aminobenzyl complexes can serve as efficient catalyst precursors for the catalytic addition of various phosphine P--H bonds to carbodiimides to form a series of phosphaguanidine derivatives with excellent tolerability to aromatic carbon-halogen bonds. A significant increase in the catalytic activity was observed, as a result of an increase in the metal size with a general trend of La>Pr, Nd>Sm>Gd>Lu>Sc. The reaction of 2-La with 1 equiv of Ph2PH yielded the corresponding phosphide complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)(thf)2] (4), which, on recrystallization from benzene, gave the dimeric analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)]2 (5). Addition of 4 or 5 to iPrN=C=NiPr in THF yielded the phosphaguanidinate complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(thf)] (6), which, on recrystallization from ether, afforded the ether-coordinated structurally characterizable analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(OEt2)] (7). The reaction of 6 or 7 with Ph2PH in THF yielded 4 and the phosphaguanidine iPrN=C(PPh2)NHiPr (3a). These results suggest that the catalytic formation of a phosphaguanidine compound proceeds through the nucleophilic addition of a phosphide species, which is formed by the acid-base reaction between a rare-earth metal o-dimethylaminobenzyl bond and a phosphine P--H bond, to a carbodiimide, followed by the protonolysis of the resultant phosphaguanidinate species by a phosphine P--H bond. Almost all of the rare earth complexes reported this paper were structurally characterized by X-ray diffraction studies.  相似文献   

7.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

8.
四羰基双[2,5-二(三甲硅基)-1-甲基环戊二烯基]   总被引:2,自引:0,他引:2  
由甲基环戊二烯经两步类似反应向其环上引入两个Me3Si取代基, 生成(Me3Si)2-MeC5H3, 后者与Fe(CO)5反应除生成预期的双核Fe-Fe键产物[η^5-{Me3Si)2MeC5H2}Fe(CO)]2-(μ-CO)2(2)外, 还分离到小量单核化合物η^5-[(Me2Si)2MeC5H2]Fe(CO)2Cl(3), 2与碘反应生成Fe-Fe键断裂的单核铁碘化物(4)。2经Na/Hg还原生成Fe-Fe键断裂的铁负离子, 后者随即分别与数种氯化物反应, 生成在铁原子上引入相应取代基的铁衍生物η^5-[(Me3Si)2MeC5H2]Fe(CO)2R(R=PhCH2, 5; CH2COOC2H5, 6; Ph3Sn, 7; Ph2SnCl, 8)。测定了4的晶体结构, 晶体属单斜晶系, P21/c空间群, 晶胞参数a=0.7333(1), b=2.0089(3),c=1.3323(4)nm; β=92.02(2)°, V=1.962(1)nm^3, Z=4。  相似文献   

9.
Reactions of LAl with ethyne, mono- and disubstituted alkynes, and diyne to aluminacyclopropene LAl[eta2-C2(R1)(R2)] ((L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3); R1 = R2 = H, (1); R1 = H, R2 = Ph, (2); R1 = R2 = Me, (3); R1 = SiMe3, R2 = C[triple bond]CSiMe3, (4)) are reported. Compounds 1 and 2 were obtained in equimolar quantities of the starting materials at low temperature. The amount of C2H2 was controlled by removing an excess of C2H2 in the range from -78 to -50 degrees C. Compound 4 can be alternatively prepared by the substitution reaction of LAl[eta2-C2(SiMe3)2] with Me3SiC[triple bond]CC[triple bond]CSiMe3 or by the reductive coupling reaction of LAlI2 with potassium in the presence of Me3SiC[triple bond]CC[triple bond]CSiMe3. The reaction of LAl with excess C2H2 and PhC[triple bond]CH (<1:2) afforded the respective alkenylalkynylaluminum compounds LAl(CH=CH2)(C[triple bond]CH) (5) and LAl(CH=CHPh)(C[triple bond]CPh) (6). The reaction of LAl(eta2-C2Ph2) with C2H2 and PhC[triple bond]CH yielded LAl(CPh=CHPh)(C[triple bond]CH) (7) and LAl(CPh=CHPh)(C[triple bond]CPh) (8), respectively. Rationally, the formation of 5 (or 6) may proceed through the corresponding precursor 1 (or 2). The theoretical studies based on DFT calculations show that an interaction between the Al(I) center and the C[triple bond]C unit needs almost no activation energy. Within the AlC2 ring the computational Al-C bond order of ca. 1 suggests an Al-C sigma bond and therefore less pi electron delocalization over the AlC2 ring. The computed Al-eta2-C2 bond dissociation energies (155-82.6 kJ/mol) indicate a remarkable reactivity of aluminacyclopropene species. Finally, the 1H NMR spectroscopy monitored reaction of LAl(eta2-C2Ph2) and PhC[triple bond]CH in toluene-d8 may reveal an acetylenic hydrogen migration process.  相似文献   

10.
A series of optically active silatrane derivatives, [Si{N(CHRCH(2)O)(CH(2)CH(2)O)(2)}X] (R = Me, i-Pr; X = Ph, OMe) has been synthesized by the reaction of optically active triethanolamine derivatives with XSi(OMe)(3), and characterized by (1)H NMR, (13)C NMR, (29)Si NMR, and mass spectroscopy, and the structures of six compounds have been determined by X-ray analysis. Molecular mechanics methods have also been employed to obtain the energy-minimized structures. The (29)Si NMR chemical shifts and the lengths of Si-N determined by X-ray analysis are sensitive to the bulkiness of the substituent (R). The Si-X bond lengths (X: trans position to nitrogen) do not appreciably differ from one another. The MM2 calculations indicated that the substituent exists in the equatorial position, and the results are in agreement with those of X-ray analysis and (1)H NMR spectroscopy. Crystallographic data: [R = H; X = OMe], C(7)H(15)NO(4)Si, orthorhombic, Pna2(1), a = 13.407(1) ?, b = 8.761(2) ?, c = 8.191(1) ?, Z = 4; [R = Me; X = OMe], C(8)H(17)NO(4)Si, orthorhombic, P2(1)2(1)2(1), a = 10.110(3) ?, b = 11.083(2) ?, c = 9.474(2) ?, Z = 4; [R = i-Pr; X = OMe], C(10)H(21)NO(4)Si, monoclinic, P2(1), a = 8.481(1) ?, b = 7.805(1) ?, c = 10.218(2) ?, beta = 111.31(1) degrees, Z = 2; [R = Me; X = Ph], C(13)H(19)NO(3)Si, orthorhombic, P2(1)2(1)2(1), a = 8.813(1) ?, b = 11.137(2) ?, c = 13.757(1) ?, Z = 4; [R = i-Pr; X = Ph], C(15)H(23)NO(3)Si, orthorhombic, P2(1)2(1)2(1), a = 8.365(1) ?, b = 13.538(2) ?, c = 13.841(2) ?, Z = 4.  相似文献   

11.
Reaction of [(eta5-C5H4Li)(eta7-C7H6Li)Cr]tmeda with a variety of dialkyl(dichloro)silanes in aliphatic solvents afforded the corresponding [1]silatrochrocenophanes. Structural characterization by X-ray diffraction analysis of the [1]silatrochrocenophanes bearing Me2Si, (iPr)2Si, and silacyclobutane bridges revealed tilt angles alpha of 15.56(12) degrees , 15.8(1) degrees , and 16.33(17) degrees , respectively. Analogously, a [2]silatrochrocenophane (6) was prepared in excellent yield by reaction of [(eta5-C5H4Li)(eta7-C7H6Li)Cr]tmeda with 1,2-dichloro-1,1,2,2-tetramethyldisilane. This complex also was characterized structurally and exhibited a tilt angle alpha of 2.60(15) degrees. The [1]silatrochrocenophane bearing the Me2Si bridge underwent facile and regioselective carbon-silicon bond cleavage with [Pt(PEt3)4] to give a very high yield of an oxidative addition product. The ring-opening polymerization of these novel [1]silatrochrocenophanes afforded ring-opened chromium-based polymers.  相似文献   

12.
The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.  相似文献   

13.
Lithium and nickel complexes bearing quinoline-based ligands have been synthesized and characterized. Reaction of 8-azidoquinoline with Ph(2)PNHR (R = p-MeC(6)H(4), Bu(t)) affords N-(8-quinolyl)iminophosphoranes RNHP(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (1a, R = p-MeC(6)H(4); 1b, R = Bu(t). C(9)H(6)N = quinolyl)). Reaction of 1a with (DME)NiCl(2) generates a nickel complex [NiCl(2){N(8-C(9)H(6)N)[double bond, length as m-dash]P(Ph(2))NH(p-MeC(6)H(4))}] (2a). Treatment of 1b with (DME)NiCl(2) and following with NaH produces [NiCl{(1,2-C(6)H(4))P(Ph)(NHBu(t))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (4). Complex 4 was also obtained by reaction of (DME)NiCl(2) with [Li{(1,2-C(6)H(4))P(Ph)(NHBu(t))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (5) prepared through lithiation of 1b. Reaction of 2-PyCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (6, Py = pyridyl) and PhN[double bond, length as m-dash]C(Ph)CH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (8), respectively, with (DME)NiCl(2) yields two five-coordinate N,N,N-chelate nickel complexes, [NiCl(2){2-PyCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (7) and [NiCl(2){PhN[double bond, length as m-dash]C(Ph)CH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (9). Similar reaction between Ph(2)PCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (10) and (DME)NiCl(2) results in five-coordinate N,N,P-chelate nickel complex [NiCl(2){Ph(2)PCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (11). Treatment of [(8-C(9)H(6)N)N[double bond, length as m-dash]P(Ph(2))](2)CH(2) (12) [prepared from (Ph(2)P)(2)CH(2) and 2 equiv. of 8-azidoquinoline] with LiBu(n) and (DME)NiCl(2) successively affords [NiCl{(8-C(9)H(6)N)NP(Ph(2))}(2)CH] (13). The new compounds were characterized by (1)H, (13)C and (31)P NMR spectroscopy (for the diamagnetic compounds), IR spectroscopy (for the nickel complexes) and elemental analysis. Complexes 2a, 4, 7, 9, 11 and 13 were also characterized by single-crystal X-ray diffraction techniques. The nickel complexes were evaluated for the catalysis in the cross-coupling reactions of arylzinc reagents with aryl chlorides and aryltrimethylammonium salts. Complex 7 exhibits the highest activity among the complexes in catalyzing the reactions of arylzinc reagents with either aryl chlorides or aryltrimethylammonium bromides.  相似文献   

14.
Finze M 《Inorganic chemistry》2008,47(24):11857-11867
Salts of the carba-closo-dodecaborate anion with one or two phenyl- or trimethylsilylalkynyl substituents were synthesized by Pd-catalyzed Kumada-type cross-coupling reactions of the corresponding iodinated clusters with alkynyl Grignard reagents. Selective monofunctionalization in the 7- and 12-position of the {closo-CB(11)} cluster was achieved, resulting in salts of the anions: [1-R-12-R'C[triple bond]C-closo-CB(11)H(10)](-) (R = H, Ph; R' = Ph, Me(3)Si (1-4)), [12-Hal-7-PhC[triple bond]C-closo-CB(11)H(10)](-) (Hal = F (5), Cl (6), Br (7)), and [12-F-7-Me(3)SiC[triple bond]C-closo-CB(11)H(10)](-) (8). Furthermore, the disubstituted derivatives [7,12-(RC[triple bond]C)(2)-closo-CB(11)H(10)](-) (R = Ph (9), Me(3)Si (10)) are described. All salts were characterized by multi-NMR, IR, and Raman spectroscopy as well as by mass spectrometry (MALDI). The crystal structures of Cs(+)1 and [Et(4)N](+)6 were determined by single-crystal X-ray diffraction. The spectroscopic and structural properties are compared to values derived from DFT calculations and to data of related boron species with alkynyl groups.  相似文献   

15.
The ring-opening reactions of a series of sila[1]ferrocenophanes with protic acids of anions with various degrees of noncoordinating character have been explored. Ferrocenyl-substituted silyl triflates FcSiMe2OTf (5 a) and Fc(3)SiOTf (5 b) (Fc=(eta5-C5H4)Fe(eta5-C5H5)) were synthesized by means of HOTf-induced ring-opening protonolysis of strained sila[1]ferrocenophanes fcSiMe2 (3 a) and fcSiFc2 (3 b) (fc=(eta5-C5H4)2Fe). Reaction of 3 a and 3 b with HBF4 yielded fluorosubstituted ferrocenylsilanes FcSiMe2F (6 a) and Fc3SiF (6 b) and suggested the intermediacy of a highly reactive silylium ion capable of abstracting F- from the [BF4]- ion. Generation of the solvated silylium ions [FcSiMe2THF]+ (7a+), [Fc3SiTHF]+ (7b+) and [FcSiiPr2OEt2]+ (7c+) at low temperatures, by reaction of the corresponding sila[1]ferrocenophanes (3 a, 3 b, and fcSiiPr2 (3 c), respectively) with H(OEt2)(S)TFPB (S=Et2O or THF; TFPB=tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) was monitored by using low-temperature 1H, 13C, and 29Si NMR spectroscopy. In situ reaction of 7a+, 7b+, and 7c+ with excess pyridine generated [FcSiMe2py]+ (8a+), [Fc3Sipy]+ (8b+), and [FcSiiPr2py]+ (8c+), respectively, as observed by 1H, 13C, and 29Si NMR spectroscopy. A preparative-scale reaction of 3 b with H(OEt2)(THF)TFPB at -60 degrees C and subsequent addition of excess pyridine gave isolable red crystals of 8b-[TFPB]CHCl3, which were characterized by 1H and 29Si NMR spectroscopy as well as by single-crystal X-ray diffraction.  相似文献   

16.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

17.
Rhodium and iridium complexes bearing a tridentate [PEP] type ligand ([PEP] = {o-(Ph(2)P)C(6)H(4)}(2)E(Me); E = Ge or Sn) were synthesized through the phosphine exchange reaction accompanied by selective E-C bond cleavage. The ligand precursors {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) (E = Ge or Sn) were readily obtained in excellent yields by treating {o-(Ph(2)P)C(6)H(4)}(2)Li with 0.5 equivalents of Me(2)ECl(2). Tris(triphenylphosphine)rhodium(i) carbonyl hydride M(H)(CO)(PPh(3))(3) (M = Rh, Ir) cleaved one of the E-Me bonds of {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) exclusively to afford the trigonal bipyramidal (TBP) complexes, [PEP]M(CO)(PPh(3)). Square-planar rhodium complexes [PEP]Rh(PPh(3)) were also prepared from the reactions of tetrakis(triphenylphosphine)rhodium(i) hydride Rh(H)(PPh(3))(4) with {o-(Ph(2)P)C(6)H(4)}(2)EMe(2). Further, the trans influence of group 14 elements E (E = Si, Ge, Sn) in [PEP]Rh(PPh(3)) is discussed in terms of the (1)J(Rh-P) coupling constants, indicating that E exhibited a stronger trans labilizing effect in the order Sn < Ge < Si.  相似文献   

18.
四羰基二(五甲二硅基环戊二烯基)二钼的合成及反应   总被引:3,自引:0,他引:3  
邝代治  周秀中 《化学学报》1994,52(9):853-857
本文进一步报道四羰基二(五甲二硅基环戊二烯基)二铜的合成及反应, 五甲二硅基环戊二烯与六羰基钼在甲苯中加热回流9h, 即生成含Mo-Mo键的双核钼配合物1, 1在甲苯中进一步加热回流, 则发生脱羰而生成标题化合物。  相似文献   

19.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

20.
The reactivity of the silylsilylene [{PhC(NtBu)(2)}SiSi(Cl){(NtBu)(2)C(H)Ph}] (2) towards diphenylacetylene, azobenzene, 2,6-diisopropylphenyl azide, sulfur, and selenium is described. The reaction of 2 with one equivalent of azobenzene in toluene afforded compound 3, which is the first example of a 1,2-diaza-3,4-disilacyclobutane containing a pentacoordinate silicon center. The formation of 3 can be explained by a [1+2] cycloaddition of the divalent Si center in 2 with PhN=NPh to form a diazasilacyclopropane intermediate, which then undergoes a 1,2-chlorine shift to release the ring strain to form 3. Similarly, the reaction of 2 with one equivalent of diphenylacetylene in toluene afforded the 1,2-disilacyclobutene 4, which contains a pentacoordinate silicon center. The reaction of 2 with 1.6 equivalents of 2,6-diisopropylphenylazide in toluene afforded the silaimine [LSi(=NAr)N(Ar)L'] (5, L=PhC(NtBu)(2) , L'=Si(Cl){(NtBu)(2)C(H)Ph}, Ar=2,6-iPr(2)C(6)H(3)). The formation of 5 can be explained by an oxidative addition of the divalent Si center in 2 with ArN(3) to afford a silaimine intermediate, which then reacts with another molecule of ArN(3) to give compound 5. The reaction of 2 with elemental sulfur in toluene afforded the chlorosilanethione [LSi(S)Cl] (6) and dithiodisiletane [{Ph(H)C(NtBu)(2) }Si(μ-S)](2) (7). Treatment of 2 with elemental selenium in THF afforded the di(silaneselone) [LSi(Se)Si(Se)L] (8). Evidently, the divalent Si center in 2 undergoes oxidative addition with chalcogens to afford a silylsilanechalcogenone intermediate, which then displaces ":Si{(NtBu)(2)C(H)Ph}" and "ClSi{(NtBu)(2) C(H)Ph}" to form 6 and 8, respectively. Moreover, compound 8 was synthesized by the reaction of [{PhC(NtBu)(2)}Si:](2) (10) with elemental selenium in THF. The results show that the reactions of 2 are initiated by oxidative addition of the divalent silicon center, and then the intermediate formed undergoes a rearrangement involving the diaminochlorosilyl substituent to form compounds 3-8. These products have been characterized by NMR spectroscopy and X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号