首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability of (C20)N metastable chains, where C20 fullerenes are joined by tight covalent bonds, is analyzed by numerical simulation using a tight-binding potential. Various channels of losing the chain-cluster structure of the (C20)N complexes have been determined including the decay of the C20 clusters, their coalescence, and the separation of one C20 fullerene from a chain. The lifetimes of the (C20)N chains with N = 3–7 for T = 2000–3500 K are directly calculated by the molecular dynamics method. It has been shown that, although the stability of the chains decreases with an increase in N, it remains sufficiently high even for N ? 1. An interesting lateral result is the observation of new (C20)N isomers with the combination of various intercluster bonds with the maximum binding energy of fullerenes in the chain.  相似文献   

2.
Ensembles of C6H6N12O12 (CL-20) clusters with different types of intercluster bonds have been studied theoretically. The stability of such cluster has been investigated and the heights of potential barriers preventing their decomposition or isomerization have been determined by means of quantum-mechanical calculations based on the density functional theory and nonorthogonal tight-binding model. From the analysis of molecular dynamics data and potential energy hypersurface of these metastable configurations, it has been established that dimers and tetramers of CL-20 clusters are characterized by sufficiently high kinetic stability, which suggests the theoretical possibility of creation of high-energy covalent crystals on their basis.  相似文献   

3.
The possible formation of a “cluster molecule” (C20)2 from two single C20 fullerenes is studied by the tight-binding method. Several (C20)2 isomers in which C20 fullerenes are bound by strong covalent forces and retain their identity are found; actually, these C20 fullerenes play the role of atoms. The so-called open-[2 + 2] isomer has a minimum energy. Its formation path and thermal stability at T = 2000–4000 K are analyzed in detail. This isomer loses its molecular structure due to either the decomposition of one of its C20 fullerenes or the coalescence of its two C20 fullerenes into a C40 cluster. The energy barriers limiting the metastable open-[2 + 2] configuration are calculated to be U = 2?5 eV.  相似文献   

4.
To understand the initial nucleation of graphene by chemical vapor deposition along metal step, carbon clusters (N = 1 ~ 24) near Rh (4 3 3) stepwise surface were systemically explored by first-principles calculations. Carbon chains are always more stable than carbon rings on stepped metal surface. Starting from C6, carbon chains prefer two-end passivation on the metal step. A structural transition of carbon clusters from one-dimensional sp chains to two-dimensional s p 2 networks are found at C10, which corresponds to the nucleation size at a wide range of chemical potentials. According to these theoretical results, we proposed that appropriately controlling the chemical potential may be helpful for observing the four stable carbon clusters along metal step and improving the quality of graphene.  相似文献   

5.
We consider a system of gravity plus free massless matter fields in 4 + N dimensions, and look for solutions in which N dimensions form a compact curved manifold, with the energy-momentum tensor responsible for the curvature produced by quantum fluctuations in the matter fields. For manifolds of sufficient symmetry (including spheres, CPN, and manifolds of simple Lie groups) the metric depends on only a single multiplicative parameter ?2, and the field equations reduce to an algebraic equation for ?, involving the potential of the matter fields in the metric of the manifold. With a large number of species of matter fields, the manifold will be larger than the Planck length, and the potential can be calculated using just one-loop graphs. In odd dimensions these are finite, and give a potential of form CN/?4. Also there are induced Yang-Mills and Einstein-Hilbert terms in the effective 4-dimensional action, proportional to additional numerical coefficients, DN and EN. General formulas are given for the gauge coupling g2 in terms of CN and DN, and the ratio ?2/8πG in terms of CN and EN. Numerical values for CN, DN, and EN are obtained for scalar and spinor fields on spheres of odd dimensionality N. It is found that the potential, g2 and ?2/8πG can all be positive but only when the compact manifold has N = 3 + 4 k dimensions. (The positivity of the potential is needed for stability of the sphere against uniform dilations or contractions). In this case, solutions exist either for spinor fields alone or for suitable mixes of spinor and scalar fields provided the ratio of the number of scalar fields to the number of fermion fields is not too large. Numerical values of the O(N + 1) gauge couplings and 8φG/?2 are calculated for illustrative values of the numbers of spinor fields. It turns out that large numbers of matter fields are needed to make these parameters reasonably small.  相似文献   

6.
The effect of heating of the electronic subsystem on the thermal stability of C60 and C20 fullerenes and a (C20)2 cluster molecule is investigated theoretically. It is demonstrated that the excitation of electrons to upper energy levels in accordance with the Fermi-Dirac distribution function does not lead to a substantial change in the activation energy E a for decay of the C20 fullerene. The stability of the C60 fullerene and the (C20)2 cluster molecule likewise does not change radically. However, the inclusion of corrections associated with the finite sizes of the heat bath leads to the activation energy E a which is in better agreement with the calculated height of the potential barrier preventing the cluster decay.  相似文献   

7.
The elemental composition of starlike fullerene-containing polystyrene films has been determined by the Rutherford backscattering, ion x-ray spectrum analysis, and nuclear reaction method. The physical properties of the films are investigated by ellipsometric, photoluminescence, and dc electrical conductivity techniques. The complex refractive index of the films is equal to 1.7?i(0.05?0.10). It is found that a maximum in the photoluminescence spectrum of the fullerene-containing polystyrene film is shifted toward the high-energy range as compared to that of the C60 film. The energy shift is directly proportional to the number N of polymer chains chemically bonded to the fullerene molecule and can be described by the empirical formula ΔE [eV]=0.04N. The electrical conductivity of the films increases proportionally with the molar concentration of C60.  相似文献   

8.
Two-dimensional systems of C20 fullerenes connected to each other by strong covalent bonds have been investigated. Several isomers differing in the type of intercluster bonds have been revealed. The lifetimes τ of the (C20) M × M complexes with M = 2 and 3 at T = 1800–3300 K have been directly calculated using the molecular dynamics method. It has been shown that these complexes lose their periodic cluster structure due usually to the coalescence of two or several neighboring C20 fullerenes. The activation energy of this process determined by analyzing the τ(T) dependence appears to be E a ≈ 2.5 eV in agreement with the calculations of the heights of the potential barriers preventing the coalescence. At high temperatures T > 2400 K, the decay of C20 fullerenes entering into the complex is possible.  相似文献   

9.
We have performed first-principles study on structural stability, elastic properties and electronic structure of Fe16N2 by applying LSDA+U method. The calculated values of formation energy and reaction enthalpy for decomposition reaction indicate that Fe16N2 is a thermodynamically stable phase at the ground state. The six independent elastic constants are derived and the bulk modulus, Young's modulus, shear modulus, and Poisson's ratio are determined as 180 GPa, 199 GPa, 76 GPa and 0.32, respectively. The elastic constants meet all the mechanical stability criteria. The ductility of Fe16N2 is predicted by Pugh's criterion. The strong bonding between Fe and N atoms results in high values of elastic constants C11 and C33, and contributes to the strengthening of the Fe16N2 structural stability. The total and partial densities of states (DOS) suggest the existence of hybridization between N-p and Fe-d bands. The position of the Fermi level in DOS curve implies that Fe16N2 is a metastable phase.  相似文献   

10.
Double mass differences between nuclei with a magic number of protons (neutrons) and their neighbors differing from them by one or two protons (neutrons) are calculated within the semimicroscopic model proposed recently for the nuclear pairing problem. The main term in the effective nucleon interaction is calculated on the basis of the realistic Argonne nucleon-nucleon potential v18. This term is supplemented with a small phenomenological term involving one universal parameter common to protons and neutrons. The double mass differences are calculated for the proton neighbors of the Z = 82, 50, 28, and 20 lead, tin, nickel, and calcium isotopic chains and for the neutron neighbors of the N = 126, 82, 50, and 20 isotonic chains. The corrections to the model that are induced by the contribution of low-lying surface vibrations (phonons) are discussed.  相似文献   

11.
Laser-induced breakdown spectroscopy (LIBS) is a promising method for fast and quantitative element analysis of complex materials. We report on LIBS measurements of multi-component oxide materials and the compositional analysis of materials by a calibration-free (CF) method. This CF-LIBS method relies on modeling of the optical emission of laser-induced plasma assuming local thermodynamic equilibrium. Various materials are investigated and the calculated concentration values (C CF) of oxides CaO, Al2O3, MgO, SiO2, FeO, and MnO are in agreement with nominal concentration values (C N) from reference analysis. The relative error in oxide concentration e r=|C CF?C N|/C N decreases with increasing concentration. The quantification is limited to major oxides (C N≥1 wt%). Slag samples from industrial steel production are analyzed on site by means of a mobile measurement system. LIBS measurements are performed at different sample temperatures. The results obtained show that CF-LIBS is applicable to fast compositional analysis of complex materials in harsh environments.  相似文献   

12.
The great advantage of the C60 molecule is its potential for polymerization, due to which the molecule can be the building block of new all carbon materials. In addition, it contains, both sp 2 and sp 3 hybridized carbon atoms, which allows synthesizing new carbon materials with desired physicochemical properties using both types of carbon bonding. The one- and two-dimensional polymeric phases of C60 are prototype materials of this sort. Their properties, especially polymerization under pressure and room temperature via covalent bonding between molecules belonging to adjacent polymeric chains or polymeric layers, can be used for further development of new materials. The present review focuses on the study of the pressure-induced polymerization and thermodynamic stability of these materials and their recovered new phases by in-situ high-pressure Raman and X-ray diffraction studies. The phonon spectra show that the fullerene molecular cage in the high-pressure phases is preserved, while these polymers decompose under heat treatment into the initial fullerene C60 monomer.  相似文献   

13.
The thermal stability of the (C20)2 cluster dimer consisting of two C20 fullerenes has been numerically examined using the tight-binding method. The simulation of the dynamics of the (C20)2 dimer at temperatures of T = 2000–3500 K shows that the finite lifetime τ of this metastable system is determined by two fundamentally different processes: the decay of one of the C20 fullerenes and the coalescence of two C20 fullerenes to the C40 cluster. The activation energies for these processes. E a ≈ 3.4 and 2.7 eV, respectively, as well as their frequency factors, have been determined by analyzing the τ(T) dependence.  相似文献   

14.
The stability of a C20@C80 nanoparticle and the rotation of its inner shell are studied theoretically within the tight-binding approximation. It is found that the C20 skeleton in the free state is described by space group D3d; in the case where C20 is placed into the C80(I h ) fullerene field, the space group of C20 is raised to I h due to isomerization. The total energy surface of the C20@C80 compound is scanned over two rotation angles. Based on an analysis of the surface relief and energy isoline map, orientational melting of the nanoparticle is predicted. A nanoparticle gyroscope—C20 rotating in the field of C80 at a certain relative orientation and energy supply—is also predicted to exist.  相似文献   

15.
Electronic structure and properties of Fe6(N1−xCx)2 carbonitrides with 0≤x≤1, i.e. the concentrations of N and C elements are respectively in range of 0∼7.69 wt% and 0∼6.67 wt%, have been studied by first-principles calculations based on density functional theory (DFT) implemented in the Cambridge Serial Total Energy Package (CASTEP) code. The calculated results show that the Fe6(N1−xCx)2 carbonitrides are thermodynamically and mechanically stable. Lattice parameters and stability of the carbonitrides increase when C atoms replace N atoms in Fe6N2 unit cell. In Fe6(N1−xCx)2 unit cell, the hybridization effect between C-2p and Fe-3d states is stronger than that between N-2p and Fe-3d states. Elastic properties and melting points of the carbonitrides change slightly with the substitution of C atoms for N atoms in Fe6(N1−xCx)2 carbonitrides.  相似文献   

16.
Novel organic–inorganic hybrid compounds, C16H44N4Pb3I10 and C14H34N2Pb2I6, were synthesized by solvent diffusion recrystallization from the dimethylsulfoxide solution containing PbI2 and gemini ammonium surfactants with different head groups. The results of single crystal X-ray structural analysis showed that the inorganic region of C16H44N4Pb3I10 has quasi one-dimensional chains of [Pb3I10]4? units, whereas that of C12H30N2Pb2I6 has one-dimensional chains of face-sharing PbI6 octahedra. The absorption and fluorescence spectra of these compounds also indicate the formation of one-dimensional inorganic chains and quantum-confined structures.  相似文献   

17.
The structural stabilities and electronic properties of C20 fullerene and some its incorporated boron and nitrogen derivatives are probed at B3LYP/AUG‐cc‐pVTZ level of theory. According to density functional theory results, the topology of inserted B or N heteroatoms in [20]‐fullerene perturbs strongly the stability, energy, geometry, charge, polarity, nucleus‐independent chemical shifts, aromaticity, and highest‐occupied molecular orbital and lowest‐unoccupied molecular orbital (HOMO–LUMO) gap of the resulting heterofullerenes. Vibrational frequency (υmin) calculations show that except N10C10, all other BbNnC20‐(b + n) heterofullerenes with b, and n = 0, 4, 5, 8, and 10 are true minima. The calculated band gaps (?EHOMO–LUMO) of B8C12, and N8C12 (2.86 eV), show them the most stable heterofullerenes against electronic excitations. While 10 B substituting in equatorial position increase the conductivity of B10C10 through decreasing its band gaps, 10 N doping in equatorial position enhance stability of N10C10 against electronic excitations via increasing its band gaps. High natural bond orbital and Mulliken charge transfer on the surfaces of B atoms, especially B5N5C10with five B–N bonds in the equatorial position, provokes further investigation on its possible application for hydrogen storage. Nucleus‐independent chemical shift values show that B5N5C10 is the most aromatic species. The calculated heat of atomization per carbon (ΔHat/C) of B8C12 shows it the most thermodynamic stable heterofullerenes of each. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A volume independent and a volume dependent lattice energy function involving short-range interatomic potentials were able to be fitted to the elastic constants, cohesive energy, lattice parameter and for the latter function to the vacancy formation energy and bcc-fcc lattice stability energy, as well, for fcc metals and bcc alkali metals, but not to the cohesive energy and C' elastic constant of bcc transition metals. The assumption that directional, but partial, covalent bonds exist between nearest-neighbors in the bcc transition elements provides an explanation for the latter results and in addition explains the identical dependence of C' and the bcc-fcc lattice stability upon Nd, where Nd is the average number of d electrons, for the bcc transition metals and alloys. Both the mechanical and thermodynamic stability of the bcc structure for transition metals and all transition metal alloys disappears for 5 ? Nd > 2 and <?1.  相似文献   

19.
The dependence on temperature of the layer magnetization of a Heisenberg ferromagnetic ultrathin film in presence of magnetocrystalline single-ion anisotropy was theoretically investigated in the framework of a Green's function approach using the random phase approximation (RPA). The effect of surface orientation and of film thickness N on the Curie temperature TC was carefully investigated in the case of face centered cubic (FCC) films: the steepest increase of TC(N) was found in the case of the FCC(1 1 1) orientation and the smoothest in the FCC(1 1 0) one. Our results for TC(N) were successfully fitted by a finite-size scaling relation [TC(∞)−TC(N)]/TC(N)=(N/N0)λ, giving a shift exponent λ≃1.5, irrespectively of the surface orientation. Finally, the temperature evolution of the magnetization profile was analyzed, as well as its limiting shape at TC.  相似文献   

20.
The results of computer simulation of the dynamics of fullerene C20 at different temperatures are presented. It is shown that, although it is metastable, this isomer is very stable with respect to the transition to a lower energy configuration and retains its chemical structure under heating to very high temperatures, T ≈ 3000 K. Its decay activation energy is found to be E a ≈ 7 eV. Possible decay channels are studied, and the height of the minimum potential barrier to decay is determined to be U = 5.0 eV. The results obtained make it possible to understand the reasons for the anomalous stability of fullerene C20 under normal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号