首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacitated vehicle routing problem (CVRP) is the problem in which a set of identical vehicles located at a central depot is to be optimally routed to supply customers with known demands subject to vehicle capacity constraints. This paper provides a review of the most recent developments that had a major impact in the current state-of-the-art of exact algorithms for the CVRP. The most important mathematical formulations for the problem together with various CVRP relaxations are reviewed. The paper also describes the recent exact methods for the CVRP and reports a comparison of their computational performances.   相似文献   

2.
In this paper we investigate a vehicle routing problem motivated by a real-world application in cooperation with the German Automobile Association (ADAC). The general task is to assign service requests to service units and to plan tours for the units such as to minimize the overall cost. The characteristics of this large-scale problem due to the data volume involve strict real-time requirements. We show that the problem of finding a feasible dispatch for service units starting at their current position and serving at most k requests is NP-complete for each fixed k ≥ 2. We also present a polynomial time (2k − 1)-approximation algorithm, where again k denotes the maximal number of requests served by a single service unit. For the boundary case when k equals the total number |E| of requests (and thus there are no limitations on the tour length), we provide a -approximation. Finally, we extend our approximation results to include linear and quadratic lateness costs.  相似文献   

3.
On the complexity of the k-customer vehicle routing problem   总被引:1,自引:0,他引:1  
We investigate the complexity of the k-CUSTOMER VEHICLE ROUTING PROBLEM: Given an edge weighted graph, the problem requires to compute a minimum weight set of cyclic routes such that each contains a distinguished depot vertex and at most other k customer vertices, and every customer belongs to exactly one route.  相似文献   

4.
A computational comparison of algorithms for the inventory routing problem   总被引:8,自引:0,他引:8  
The inventory routing problem is a distribution problem in which each customer maintains a local inventory of a product such as heating oil and consumes a certain amount of that product each day. Each day a fleet of trucks is dispatched over a set of routes to resupply a subset of the customers. In this paper, we describe and compare algorithms for this problem defined over a short planning period, e.g. one week. These algorithms define the set of customers to be serviced each day and produce routes for a fleet of vehicles to service those customers. Two algorithms are compared in detail, one which first allocates deliveries to days and then solves a vehicle routing problem and a second which treats the multi-day problem as a modified vehicle routing problem. The comparison is based on a set of real data obtained from a propane distribution firm in Pennsylvania. The solutions obtained by both procedures compare quite favorably with those in use by the firm.Part of this work was performed while this author was visiting the University of Waterloo.  相似文献   

5.
In this paper we revise and modify an old branch-and-bound method for solving the asymmetric distance–constrained vehicle routing problem suggested by Laporte et al. in 1987. Our modification is based on reformulating distance–constrained vehicle routing problem into a travelling salesman problem, and on using assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance based branching rules. Since our method is fast but memory consuming, it could stop before optimality is proven. Therefore, we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. As far as we know, the instances that we have solved exactly (up to 1000 customers) are much larger than the instances considered for other vehicle routing problem models from the recent literature. So, despite of its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used for solving other types of vehicle routing problems.  相似文献   

6.
This paper presents a unified exact method for solving an extended model of the well-known Capacitated Vehicle Routing Problem (CVRP), called the Heterogenous Vehicle Routing Problem (HVRP), where a mixed fleet of vehicles having different capacities, routing and fixed costs is used to supply a set of customers. The HVRP model considered in this paper contains as special cases: the Single Depot CVRP, all variants of the HVRP presented in the literature, the Site-Dependent Vehicle Routing Problem (SDVRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). This paper presents an exact algorithm for the HVRP based on the set partitioning formulation. The exact algorithm uses three types of bounding procedures based on the LP-relaxation and on the Lagrangean relaxation of the mathematical formulation. The bounding procedures allow to reduce the number of variables of the formulation so that the resulting problem can be solved by an integer linear programming solver. Extensive computational results over the main instances from the literature of the different variants of HVRPs, SDVRP and MDVRP show that the proposed lower bound is superior to the ones presented in the literature and that the exact algorithm can solve, for the first time ever, several test instances of all problem types considered.   相似文献   

7.
The capacitated vehicle routing problem with stochastic demands (CVRPSD) is a variant of the deterministic capacitated vehicle routing problem where customer demands are random variables. While the most successful formulations for several deterministic vehicle-routing problem variants are based on a set-partitioning formulation, adapting such formulations for the CVRPSD under mild assumptions on the demands remains challenging. In this work we provide an explanation to such challenge, by proving that when demands are given as a finite set of scenarios, solving the LP relaxation of such formulation is strongly NP-Hard. We also prove a hardness result for the case of independent normal demands.  相似文献   

8.
The solution of a vehicle routing problem calls for the determination of a set of routes, each performed by a single vehicle which starts and ends at its own depot, such that all the requirements of the customers are fulfilled and the global transportation cost is minimized. The routes have to satisfy several operational constraints which depend on the nature of the transported goods, on the quality of the service level, and on the characteristics of the customers and of the vehicles. One of the most common operational constraint addressed in the scientific literature is that the vehicle fleet is capacitated and the total load transported by a vehicle cannot exceed its capacity.  相似文献   

9.
The tour partitioning heuristic for the vehicle routing problem assumes an unlimited supply of vehicles. If the number of vehicles is fixed, this heuristic may produce infeasible solutions. We modify the heuristic to guarantee feasibility in this situation and we analyze the worst-case performance of the modified heuristic.  相似文献   

10.
Path relinking for the vehicle routing problem   总被引:3,自引:0,他引:3  
This paper describes a tabu search heuristic with path relinking for the vehicle routing problem. Tabu search is a local search method that explores the solution space more thoroughly than other local search based methods by overcoming local optima. Path relinking is a method to integrate intensification and diversification in the search. It explores paths that connect previously found elite solutions. Computational results show that tabu search with path relinking is superior to pure tabu search on the vehicle routing problem.  相似文献   

11.
Electric bus scheduling problem can be defined as vehicle scheduling problem with route and fueling time constraints (VSPRFTC). Every vehicle’s travel miles (route time) after charging is limited, thus the vehicle must be recharged after taking several trips and the minimal charging time (fueling time) must be satisfied. A multiple ant colony algorithm (ACA) was presented to solve VSPRFTC based on ACA used to solve traveling salesman problem (TSP), a new metaheuristic approach inspired by the foraging behavior of real colonies of ants. The VSPRFTC considered in this paper minimizes a multiple, hierarchical objective function: the first objective is to minimize the number of tours (or vehicles) and the second is to minimize the total deadhead time. New improvement of ACA as well as detailed operating steps was provided on the basis of former algorithm. Then in order to settle contradiction between accelerating convergence and avoiding prematurity or stagnation, improvement on route construction rule and Pheromone updating rule was adopted. A group feasible trip sets (blocks) had been produced after the process of applying ACA. In dealing with the fueling time constraint a bipartite graphic model and its optimization algorithm are developed for trip set connecting in a hub and spoke network system to minimize the number of vehicle required. The maximum matching of the bipartite graph is obtained by calculating the maximum inflow with the Ford–Fulkerson algorithm. At last, an example was analyzed to demonstrate the correctness of the application of this algorithm. It proved to be more efficient and robust in solving this problem.  相似文献   

12.
The vehicle routing problem (VRP) under capacity and distance restrictions involves the design of a set of minimum cost delivery routes, originating and terminating at a central depot, which services a set of customers. Each customer must be supplied exactly once by one vehicle route. The total demand of any vehicle must not exceed the vehicle capacity. The total length of any route must not exceed a pre-specified bound. Approximate methods based on descent, hybrid simulated annealing/tabu search, and tabu search algorithms are developed and different search strategies are investigated. A special data structure for the tabu search algorithm is implemented which has reduced notably the computational time by more than 50%. An estimate for the tabu list size is statistically derived. Computational results are reported on a sample of seventeen bench-mark test problems from the literature and nine randomly generated problems. The new methods improve significantly both the number of vehicles used and the total distances travelled on all results reported in the literature.  相似文献   

13.
We consider the basic Vehicle Routing Problem (VRP) in which a fleet ofM identical vehicles stationed at a central depot is to be optimally routed to supply customers with known demands subject only to vehicle capacity constraints. In this paper, we present an exact algorithm for solving the VRP that uses lower bounds obtained from a combination of two relaxations of the original problem which are based on the computation ofq-paths andk-shortest paths. A set of reduction tests derived from the computation of these bounds is applied to reduce the size of the problem and to improve the quality of the bounds. The resulting lower bounds are then embedded into a tree-search procedure to solve the problem optimally. Computational results are presented for a number of problems taken from the literature. The results demonstrate the effectiveness of the proposed method in solving problems involving up to about 50 customers and in providing tight lower bounds for problems up to about 150 customers.  相似文献   

14.
The vehicle routing problem with multiple use of vehicles is a variant of the classical vehicle routing problem. It arises when each vehicle performs several routes during the workday due to strict time limits on route duration (e.g., when perishable goods are transported). The routes are defined over customers with a revenue, a demand and a time window. Given a fixed-size fleet of vehicles, it might not be possible to serve all customers. Thus, the customers must be chosen based on their associated revenue minus the traveling cost to reach them. We introduce a branch-and-price approach to address this problem where lower bounds are computed by solving the linear programming relaxation of a set packing formulation, using column generation. The pricing subproblems are elementary shortest path problems with resource constraints. Computational results are reported on euclidean problems derived from well-known benchmark instances for the vehicle routing problem with time windows.  相似文献   

15.
We study a multiple-vehicle routing problem with a minimum makespan objective and compatibility constraints. We provide an approximation algorithm and a nearly-matching hardness of approximation result. We also provide computational results on benchmark instances with diverse sizes showing that the proposed algorithm (i) has a good empirical approximation factor, (ii) runs in a short amount of time and (iii) produces solutions comparable to the best feasible solutions found by a direct integer program formulation.  相似文献   

16.
This work proposes a scatter search (SS) approach to solve the fleet size and mix vehicle routing problem with time windows (FSMVRPTW). In the FSMVRPTW the customers need to be serviced in their time windows at minimal costs by a heterogeneous fleet. Computational results on 168 benchmark problems are reported. Computational testing revealed that our algorithm presented better results compared to other methods published in the literature.  相似文献   

17.
We suggest an efficient route minimization heuristic for the vehicle routing problem with time windows. The heuristic is based on the ejection pool, powerful insertion and guided local search strategies. Experimental results on the Gehring and Homberger’s benchmarks demonstrate that our algorithm outperforms previous approaches and found 18 new best-known solutions.  相似文献   

18.
In this paper we present two exact branch-and-cut algorithms for the Split Delivery Vehicle Routing Problem (SDVRP) based on two relaxed formulations that provide lower bounds to the optimum. Procedures to obtain feasible solutions to the SDVRP from a feasible solution to the relaxed formulations are presented. Computational results are presented for 4 classes of benchmark instances. The new approach is able to prove the optimality of 17 new instances. In particular, the branch-and-cut algorithm based on the first relaxed formulation is able to solve most of the instances with up to 50 customers and two instances with 75 and 100 customers.  相似文献   

19.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

20.
Vehicle routing and scheduling problems have a wide range of applications and have been intensively studied in the past half century. The condition that enforces each vehicle to start service at each customer in the period specified by the customer is called the time window constraint. This paper reviews recent results on how to handle hard and soft time window constraints, putting emphasis on its different definitions and algorithms. With these diverse time windows, the problem becomes applicable to a wide range of real-world problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号