首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the time evolution process of one selected (initially prepared by optical pumping) vibrational molecular state S, coupled to all other intra-molecular vibrational states R of the same molecule, and also to its environment Q. Molecular states forming the first reservoir R are characterized by a discrete dense spectrum, whereas the environment reservoir Q states form a continuous spectrum. Assuming the equidistant reservoir R states we find the exact analytical solution of the quantum dynamic equations. S-Q and R-Q couplings yield to spontaneous decay of the S and R states, whereas S-R exchange leads to recurrence cycles and Loschmidt echo at frequencies of S-R transitions and double resonances at the interlevel reservoir R transitions. Due to these couplings the system S time evolution is not reduced to a simple exponential relaxation. We predict various regimes of the system S dynamics, ranging from exponential decay to irregular damped oscillations. Namely, we show that there are possible four dynamic regimes of the evolution: (i) independent of the environment Q exponential decay suppressing backward R - S transitions, (ii) Loschmidt echo regime, (iii) incoherent dynamics with multicomponent Loschmidt echo, when the system state is exchanged its energy with many states of the reservoir, (iv) cycle mixing regime, when long time system dynamics looks as a random-like. We suggest applications of our results for interpretation of femtosecond vibration spectra of large molecules and nano-systems.  相似文献   

2.
The characterization of plasticity, robustness, and evolvability, an important issue in biology, is studied in terms of phenotypic fluctuations. By numerically evolving gene regulatory networks, the proportionality between the phenotypic variances of epigenetic and genetic origins is confirmed. The former is given by the variance of the phenotypic fluctuation due to noise in the developmental process; and the latter, by the variance of the phenotypic fluctuation due to genetic mutation. The relationship suggests a link between robustness to noise and to mutation, since robustness can be defined by the sharpness of the distribution of the phenotype. Next, the proportionality between the variances is demonstrated to also hold over expressions of different genes (phenotypic traits) when the system acquires robustness through the evolution. Then, evolution under environmental variation is numerically investigated and it is found that both the adaptability to a novel environment and the robustness are made compatible when a certain degree of phenotypic fluctuations exists due to noise. The highest adaptability is achieved at a certain noise level at which the gene expression dynamics are near the critical state to lose the robustness. Based on our results, we revisit Waddington’s canalization and genetic assimilation with regard to the two types of phenotypic fluctuations.  相似文献   

3.
Kavita Jain 《Pramana》2008,71(2):275-282
We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly focus on the Eigen’s model that describes the deterministic dynamics of an infinite number of self-replicating molecules. In the stationary state, for small mutation rates such a population forms a quasispecies which consists of the fittest genotype and its closely related mutants. The quasispecies dynamics on rugged fitness landscape follow a punctuated (or steplike) pattern in which a population jumps from a low fitness peak to a higher one, stays there for a considerable time before shifting the peak again and eventually reaches the global maximum of the fitness landscape. We calculate exactly several properties of this dynamical process within a simplified version of the quasispecies model.   相似文献   

4.
This paper reviews various applications of the theory of smooth dynamical systems to conceptual problems of nonequilibrium statistical mecanics. We adopt a new point of view which has emerged progressively in recent years, and which takes seriously into account the chaotic character of the microscopic time evolution. The emphasis is on nonequilibrium steady states rather than the traditional approach to equilibrium point of view of Boltzmann. The nonequilibrium steady states, in presence of a Gaussian thermostat, are described by SRB measures. In terms of these one can prove the Gallavotti–Cohen fluctuation theorem. One can also prove a general linear response formula and study its consequences, which are not restricted to near-equilibrium situations. At equilibrium one recovers in particular the Onsager reciprocity relations. Under suitable conditions the nonequilibrium steady states satisfy the pairing theorem of Dettmann and Morriss. The results just mentioned hold so far only for classical systems; they do not involve large size, i.e., they hold without a thermodynamic limit.  相似文献   

5.
We investigate the entanglement dynamics in a bipartite atomic system subjected to thermal environment with arbitrary initial pure entangled states. We consider the atoms close together and study the effect of temperature of the reservoir and the interatomic distance on the evolution of entanglement for both initially entangled and unentangled states. We find that we can have long time entanglement even in thermal environment.  相似文献   

6.
A generic property of a first-order phase transition in equilibrium, and in the limit of large entropy per unit of conserved charge, is the smallness of the isentropic speed of sound in the “mixed phase”. A specific prediction is that this should lead to a non-isotropic momentum distribution of nucleons in the reaction plane (for energies ≈ 40 A GeV in our model calculation). On the other hand, we show that from present effective theories for low-energy QCD one does not expect the thermal transition rate between various states of the effective potential to be much larger than the expansion rate, questioning the applicability of the idealized Maxwell/Gibbs construction. Experimental data could soon provide essential information on the dynamics of the phase transition.  相似文献   

7.
8.
Classical models for competition between two species usually predict exclusion or divergent evolution of resource exploitation. However, recent experimental data show that coexistence is possible for very similar species competing for the same resources without niche partition. Motivated by this experimental challenge to classical competition theory, we propose an individual-based stochastic competition model, which is essentially a modification of a deterministic Lotka-Volterra type model. The proposed model of competition dynamics incorporates the effects of a discrete genotype, which determines the individual's adaptation to the environment, as well as its interaction with the other species.  相似文献   

9.
We consider the possibility that simultaneously time and intrinsic length can be regarded as discrete real parameters. We study the dynamics of the free particle. For both scattering and bound states there are configurations where the energy is bounded from above and from below even for positive wave-function solutions. For the case of continuous evolution we show that the wave equation with a linear scalar coupling describes an oscillator that has built-in hidden supersymmetry.  相似文献   

10.
We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish space and d L is a geodesic Borel distance which makes (X, d L ) a non branching geodesic space. We show that under the assumption that geodesics are d-continuous and locally compact, we can reduce the transport problem to 1-dimensional transport problems along geodesics. We introduce two assumptions on the transport problem π which imply that the conditional probabilities of the first marginal on each geodesic are continuous or absolutely continuous w.r.t. the 1-dimensional Hausdorff distance induced by d L . It is known that this regularity is sufficient for the construction of a transport map. We study also the dynamics of transport along the geodesic, the stability of our conditions and show that in this setting d L -cyclical monotonicity is not sufficient for optimality.  相似文献   

11.
Using molecular dynamics simulations we investigate the thermodynamics of particles interacting with continuous and discrete versions of a core-softened (CS) intermolecular potential composed by a repulsive shoulder. Dynamical and structural properties are also analyzed by the simulations. We show that in the continuous version of the CS potential the density at constant pressure has a maximum for a certain temperature. Similarly the diffusion constant, D, at a constant temperature has a maximum at a density ρ D max and a minimum at a density ρ D min < ρDmax, and structural properties are also anomalous. For the discrete CS potential none of these anomalies are observed. The absence of anomalies in the discrete case and its presence in the continuous CS potential are discussed in the framework of the excess entropy.  相似文献   

12.
Abhijit Kar Gupta 《Physica A》2012,391(4):1509-1514
This work is primarily based on a recently proposed toy model by Thurner et al. (2010) [3] on Schumpeterian economic dynamics (inspired by the idea of economist Joseph Schumpeter [9]). Interestingly, punctuated equilibrium has been shown to emerge from the dynamics. The punctuated equilibrium and Power law are known to be associated with similar kinds of biologically relevant evolutionary models proposed in the past. The occurrence of the Power law is a signature of Self-Organised Criticality (SOC). In our view, power laws can be obtained by controlling the dynamics through incorporating the idea of feedback into the algorithm in some way. The so-called ‘feedback’ was achieved by introducing the idea of fitness and selection processes in the biological evolutionary models. Therefore, we examine the possible emergence of a power law by invoking the concepts of ‘fitness’ and ‘selection’ in the present model of economic evolution.  相似文献   

13.
14.
We studied the behaviour under decoherence of four different measures of the distance between quantum states and classical states for the harmonic oscillator coupled to a linear Markovian bath. Three of these are relative measures, using different definitions of the distance between the given quantum states and the set of all classical states. The fourth measure is an absolute one, the negative volume of the Wigner function of the state. All four measures are found to agree, in general, with each other. When applied to the eigenstates |n〉, all four measures behave non-trivially as a function of time during dynamical decoherence. First, we find that the first set of classical states to which the set of eigenstate evolves is (by all measures used) closest to the initial set. That is, all the states decohere to classicality along the ‘shortest path’. Finding this closest classical set of states helps improve the behaviour of all the relative distance measures. Second, at each point in time before becoming classical, all measures have a state n? with maximal quantum-classical distance; the value n? decreases as a function of time. Finally, we explore the dynamics of these non-classicality measures for more general states.  相似文献   

15.
The continuous evolution of the Mixmaster universe toward the cosmological singularity contains features that differ substantially from its discrete counterpart. We examine here the determination and interpretation of the Liapunov exponent of the continuous orbit. It is briefly mentioned that this is not the only aspect of the Mixmaster dynamics to be affected when we switch from continuous to discrete mode of evolution.  相似文献   

16.
We suggest a model for a hydrogenic low-temperature nonequilibrium nonideal plasma that allows the kinetic parameters of the plasma to be calculated by the method of molecular dynamics by taking into account the interparticle interaction. The charges interact according to Coulomb’s law; for unlike charges, the interaction is assumed to be equal to a constant at a distance smaller than several Bohr radii. For a system of particles, we solve the classical equations of motion under periodic boundary conditions. The initial conditions are specified in such a way that the electrons have a positive total energy. We consider the temperatures 1-50 K and densities n = 109?1010 cm?3 produced in an experiment through laser cooling and resonant excitation. We calculate the electron state density as a function of the plasma coupling parameter and the electron diffusion coefficient in energy space for highly excited (Rydberg) electron states close to the boundary of the discrete and continuum spectra.  相似文献   

17.
We investigate the quasi-energy spectrum of a quantal parametric resonator, whose frequency is modulated by a periodic δ (t) term. The system displays two distinct phases, depending on the nature (discrete or continuous) of the quasi-energy spectrum. We investigate the dynamics in the two phases and the transition between them which is induced by varying the coupling strength. Special attention is given to those observables which might be used as indicators of stochasticity in the quantum dynamics.  相似文献   

18.
The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola-Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.  相似文献   

19.
We study the photoproduction of neutral pions on nuclei to discrete final states at intermediate energies. Both photoproduction and distortion of the π0 are dominated by Δ-excitation, which requires a careful treatment of the Δ-nucleus dynamics. We use the Δ-hole approach, which has been used to describe a variety of pion- and photon-induced nuclear reactions. It is shown that π0 photoproduction is very sensitive to medium effects of Δ-propagation and can therefore be used to investigate the Δ-nucleus interaction. The validity of the distorted-wave impulse approximation for this reaction is examined. Results for low-lying excitations in 12C are compared with the available data.  相似文献   

20.
《Nuclear Physics B》1999,546(3):711-730
We construct Landau-Ginzburg effective field theories for fractional quantum Hall states - such as the Pfaffian state - which exhibit non-abelian statistics. These theories rely on a Meissner construction which increases the level of a non-abelian Chem-Simons theory while simultaneously projecting out the unwanted degrees of freedom of a concomitant enveloping abelian theory. We describe this construction in the context of a system of bosons at Landau level filling factor ν = l, where the non-abelian symmetry is a dynamically generated SU(2) continuous extension of the discrete particle-hole symmetry of the lowest Landau level. We show how the physics of quasiparticles and their non-abelian statistics arises in this Landau-Ginzburg theory. We describe its relation to edge theories - where a coset construction plays the role of the Meissner projection — and discuss extensions to other states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号