首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities (LMI's). In particular, we show that our approach leads to a polynomial-time approximation scheme for the standard quadratic optimzation problem. This is an improvement on the previous complexity result by Nesterov who showed that a 2/3-approximation is always possible. Numerical examples from various applications are provided to illustrate our approach.  相似文献   

2.
We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.  相似文献   

3.
Copositive optimization problems are particular conic programs: optimize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone from within, we propose a method which approximates this cone from outside. This is achieved by passing to the dual problem, where the feasible set is an affine subspace intersected with the cone of completely positive matrices, and this cone is approximated from within. We consider feasible descent directions in the completely positive cone, and regularized strictly convex subproblems. In essence, we replace the intractable completely positive cone with a nonnegative cone, at the cost of a series of nonconvex quadratic subproblems. Proper adjustment of the regularization parameter results in short steps for the nonconvex quadratic programs. This suggests to approximate their solution by standard linearization techniques. Preliminary numerical results on three different classes of test problems are quite promising.  相似文献   

4.
A symmetric tensor is called copositive if it generates a multivariate form taking nonnegative values over the nonnegative orthant. Copositive tensors have found important applications in polynomial optimization, tensor complementarity problems and vacuum stability of a general scalar potential. In this paper, we consider copositivity detection of tensors from both theoretical and computational points of view. After giving several necessary conditions for copositive tensors, we propose several new criteria for copositive tensors based on the representation of the multivariate form in barycentric coordinates with respect to the standard simplex and simplicial partitions. It is verified that, as the partition gets finer and finer, the concerned conditions eventually capture all strictly copositive tensors. Based on the obtained theoretical results with the help of simplicial partitions, we propose a numerical method to judge whether a tensor is copositive or not. The preliminary numerical results confirm our theoretical findings.  相似文献   

5.
We present a new copositive Farkas lemma for a general conic quadratic system with binary constraints under a convexifiability requirement. By employing this Farkas lemma, we establish that a minimally exact conic programming relaxation holds for a convexifiable robust quadratic optimization problem with binary and quadratic constraints under a commonly used ellipsoidal uncertainty set of robust optimization. We then derive a minimally exact copositive relaxation for a robust binary quadratic program with conic linear constraints where the convexifiability easily holds.  相似文献   

6.
This paper studies tensor eigenvalue complementarity problems. Basic properties of standard and complementarity tensor eigenvalues are discussed. We formulate tensor eigenvalue complementarity problems as constrained polynomial optimization. When one tensor is strictly copositive, the complementarity eigenvalues can be computed by solving polynomial optimization with normalization by strict copositivity. When no tensor is strictly copositive, we formulate the tensor eigenvalue complementarity problem equivalently as polynomial optimization by a randomization process. The complementarity eigenvalues can be computed sequentially. The formulated polynomial optimization can be solved by Lasserre’s hierarchy of semidefinite relaxations. We show that it has finite convergence for generic tensors. Numerical experiments are presented to show the efficiency of proposed methods.  相似文献   

7.
The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the chromatic number of G, which is shown to be equal to the fractional chromatic number of G. Solving copositive programs is NP-hard. This motivates the study of tractable approximations of the copositive cone. We investigate the Parrilo hierarchy to approximate this cone and provide computational simplifications for the approximation of the chromatic number of vertex transitive graphs. We provide some computational results indicating that the Lovász theta number can be strengthened significantly toward the fractional chromatic number of G on some Hamming graphs. Partial support by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438, is gratefully acknowledged.  相似文献   

8.
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dual, the cone of copositive matrices. As a result of this reformulation approach, novel solution schemes for quadratic polynomial optimization problems have been designed by drawing on conic programming tools, and the extensively studied cones of completely positive and of copositive matrices. In particular, this approach has been applied to solve key combinatorial optimization problems. Along this line of research, we consider polynomial optimization problems that are not necessarily quadratic. For this purpose, we use a natural extension of the cone of completely positive matrices; namely, the cone of completely positive tensors. We provide a general characterization of the class of polynomial optimization problems that can be formulated as a conic program over the cone of completely positive tensors. As a consequence of this characterization, it follows that recent related results for quadratic problems can be further strengthened and generalized to higher order polynomial optimization problems. Also, we show that the conditions underlying the characterization are conceptually the same, regardless of the degree of the polynomials defining the problem. To illustrate our results, we discuss in further detail special and relevant instances of polynomial optimization problems.  相似文献   

9.
Copositive and completely positive matrices play an increasingly important role in Applied Mathematics, namely as a key concept for approximating NP-hard optimization problems. The cone of copositive matrices of a given order and the cone of completely positive matrices of the same order are dual to each other with respect to the standard scalar product on the space of symmetric matrices. This paper establishes some new relations between orthogonal pairs of such matrices lying on the boundary of either cone. As a consequence, we can establish an improvement on the upper bound of the cp-rank of completely positive matrices of general order and a further improvement for such matrices of order six.  相似文献   

10.
In this paper, we model any nonconvex quadratic program having a mix of binary and continuous variables as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of a small collection of NP-hard problems. A simplification, which reduces the dimension of the linear conic program, and an extension to complementarity constraints are established, and computational issues are discussed. Research partially supported by NSF Grant CCF-0545514.  相似文献   

11.
We prove convergence of the whole sequence generated by any of a large class of iterative algorithms for the symmetric linear complementarity problem (LCP), under the only hypothesis that a quadratic form associated with the LCP is bounded below on the nonnegative orthant. This hypothesis holds when the matrix is strictly copositive, and also when the matrix is copositive plus and the LCP is feasible. The proof is based upon the linear convergence rate of the sequence of functional values of the quadratic form. As a by-product, we obtain a decomposition result for copositive plus matrices. Finally, we prove that the distance from the generated sequence to the solution set (and the sequence itself, if its limit is a locally unique solution) have a linear rate of R-convergence.Research for this work was partially supported by CNPq grant No. 301280/86.  相似文献   

12.
We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which in turn leads to a class of tractable, semidefinite-based approximations that are at least as strong as the affine policy. We investigate several examples from the literature demonstrating that our tractable approximations significantly improve the affine policy. In particular, our approach solves exactly in polynomial time a class of instances of increasing size for which the affine policy admits an arbitrarily large gap.  相似文献   

13.
In an important paper, Burer (Math. Program Ser. A 120:479–495, 2009) recently showed how to reformulate general mixed-binary quadratic optimization problems (QPs) into copositive programs where a linear functional is minimized over a linearly constrained subset of the cone of completely positive matrices. In this note we interpret the implication from a topological point of view, showing that the Minkowski sum of the lifted feasible set and the lifted recession cone gives exactly the closure of the former. We also discuss why feasibility of the copositive program implies feasibility of the original mixed-binary QP, which can be derived from the arguments in Burer (Math. Program Ser. A 120:479–495, 2009) without any further condition.  相似文献   

14.
In this paper, we study the asymptotic stability of continuous-time positive switched linear systems for the case when each subsystem is only stable. By using the so-called “joint linear copositive Lyapunov function” (JLCLF) generalizing the common linear copositive Lyapunov function, we show that the system remains asymptotically stable under appropriate switching if it has a JLCLF. Then, the main result is extended to positive switched linear systems with time delay.  相似文献   

15.
1引言考虑对称线性互补问题:求x∈R~N使得(1) Ax 6≥0,x≥0,x~T(Ax b)=0其中,A是给定的N×N实对称矩阵,b是N×1向量.目前求解该互补问题的迭代算法有很多(如Mangasarian(1977),Mangasarian,Leone (1987),Cottle(1992),曾金平,李董辉(1994)等).区域分解法以其将大问题化为若干子问  相似文献   

16.
A unified treatment is given for iterative algorithms for the solution of the symmetric linear complementarity problem: $$Mx + q \geqslant 0, x \geqslant 0, x^T (Mx + q) = 0$$ , whereM is a givenn×n symmetric real matrix andq is a givenn×1 vector. A general algorithm is proposed in which relaxation may be performed both before and after projection on the nonnegative orthant. The algorithm includes, as special cases, extensions of the Jacobi, Gauss-Seidel, and nonsymmetric and symmetric successive over-relaxation methods for solving the symmetric linear complementarity problem. It is shown first that any accumulation point of the iterates generated by the general algorithm solves the linear complementarity problem. It is then shown that a class of matrices, for which the existence of an accumulation point that solves the linear complementarity problem is guaranteed, includes symmetric copositive plus matrices which satisfy a qualification of the type: $$Mx + q > 0 for some x in R^n $$ . Also included are symmetric positive-semidefinite matrices satisfying this qualification, symmetric, strictly copositive matrices, and symmetric positive matrices. Furthermore, whenM is symmetric, copositive plus, and has nonzero principal subdeterminants, it is shown that the entire sequence of iterates converges to a solution of the linear complementarity problem.  相似文献   

17.
In this paper, we consider the problem of approximately solving standard quartic polynomial optimization (SQPO). Using its reformulation as a copositive tensor programming, we show how to approximate the optimal solution of SQPO by using a series of polyhedral cones to approximate the cone of copositive tensors. The established quality of approximation is sharper than the ones studied in the literature. As an interesting extension, we also propose some approximation bounds on multi-homogenous polynomial optimization problems.  相似文献   

18.
Copositive optimization is a quickly expanding scientific research domain with wide-spread applications ranging from global nonconvex problems in engineering to NP-hard combinatorial optimization. It falls into the category of conic programming (optimizing a linear functional over a convex cone subject to linear constraints), namely the cone C{\mathcal{C}} of all completely positive symmetric n × n matrices (which can be factorized into FFT{FF^\top} , where F is a rectangular matrix with no negative entry), and its dual cone C*{\mathcal{C}^*} , which coincides with the cone of all copositive matrices (those which generate a quadratic form taking no negative value over the positive orthant). We provide structural algebraic properties of these cones, and numerous (counter-)examples which demonstrate that many relations familiar from semidefinite optimization may fail in the copositive context, illustrating the transition from polynomial-time to NP-hard worst-case behaviour. In course of this development we also present a systematic construction principle for non-attainability phenomena, which apparently has not been noted before in an explicit way. Last but not least, also seemingly for the first time, a somehow systematic clustering of the vast and scattered literature is attempted in this paper.  相似文献   

19.
We study the common linear copositive Lyapunov functions of positive linear systems. Firstly, we present a theorem on pairs of second order positive linear systems, and give another proof of this theorem by means of properties of geometry. Based on the process of the proof, we extended the results to a finite number of second order positive linear systems. Then we extend this result to third order systems. Finally, for higher order systems, we give some results on common linear copositive Lyapunov functions.  相似文献   

20.
Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Through a series of computational experiments comparing the new algorithm with existing codes on a diverse set of test instances, we demonstrate that the new algorithm is an attractive method for globally solving nonconvex QP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号