首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strongly polynomial algorithm for the transportation problem   总被引:3,自引:0,他引:3  
For the (linear) transportation problem withm supply nodes,n demand nodes andk feasible arcs we describe an algorithm which runs in time proportional tom logm(k + n logn) (assuming w.l.o.g.mn). The algorithm uses excess scaling. The complexity bound is a slight improvement over the bound achieved by an application of a min-cost-flow algorithm of Orlin to the transportation problem.Corresponding author. Research supported in part by grant no. I-84-095.06/88 of the German—Israeli-Foundation for Scientific Research and Development.  相似文献   

2.
We show that the production-transportation problem involving an arbitrary fixed number of factories with concave production cost is solvable in strongly polynomial time. The algorithm is based on a parametric approach which takes full advantage of the specific structure of the problem: monotonicity of the objective function along certain directions, small proportion of nonlinear variables and combinatorial properties implied by transportation constraints.  相似文献   

3.
Quadratic knapsack problem has a central role in integer and nonlinear optimization, which has been intensively studied due to its immediate applications in many fields and theoretical reasons. Although quadratic knapsack problem can be solved using traditional nonlinear optimization methods, specialized algorithms are much faster and more reliable than the nonlinear programming solvers. In this paper, we study a mixed linear and quadratic knapsack with a convex separable objective function subject to a single linear constraint and box constraints. We investigate the structural properties of the studied problem, and develop a simple method for solving the continuous version of the problem based on bi-section search, and then we present heuristics for solving the integer version of the problem. Numerical experiments are conducted to show the effectiveness of the proposed solution methods by comparing our methods with some state of the art linear and quadratic convex solvers.  相似文献   

4.
In this note, we analyze a bilevel interdiction problem, where the follower’s program is a parametrized continuous knapsack. Based on the structure of the problem and an inverse optimization strategy, we propose for its solution an algorithm with worst-case complexity O(n2).  相似文献   

5.
The general problem of minimizing the maximal regret in combinatorial optimization problems with interval costs is considered. Some results are proven that allow to obtain a fully polynomial time approximation scheme (FPTAS) for the problem under the assumption that a pseudopolynomial algorithm is given.  相似文献   

6.
We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528–541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.  相似文献   

7.
In this paper we show that the complexity of the simplex method for the linear fractional assignment problem (LFAP) is strongly polynomial. Although LFAP can be solved in polynomial time using various algorithms such as Newton’s method or binary search, no polynomial time bound for the simplex method for LFAP is known.  相似文献   

8.
Iterated greedy search is a simple and effective metaheuristic for combinatorial problems. Its flexibility enables the incorporation of components from other metaheuristics with the aim of obtaining effective and powerful hybrid approaches. We propose a tabu-enhanced destruction mechanism for iterated greedy search that records the last removed objects and avoids removing them again in subsequent iterations. The aim is to provide a more diversified and successful search process with regards to the standard destruction mechanism, which selects the solution components for removal completely at random.  相似文献   

9.
In this study, we introduce a cooperative parallel tabu search algorithm (CPTS) for the quadratic assignment problem (QAP). The QAP is an NP-hard combinatorial optimization problem that is widely acknowledged to be computationally demanding. These characteristics make the QAP an ideal candidate for parallel solution techniques. CPTS is a cooperative parallel algorithm in which the processors exchange information throughout the run of the algorithm as opposed to independent concurrent search strategies that aggregate data only at the end of execution. CPTS accomplishes this cooperation by maintaining a global reference set which uses the information exchange to promote both intensification and strategic diversification in a parallel environment. This study demonstrates the benefits that may be obtained from parallel computing in terms of solution quality, computational time and algorithmic flexibility. A set of 41 test problems obtained from QAPLIB were used to analyze the quality of the CPTS algorithm. Additionally, we report results for 60 difficult new test instances. The CPTS algorithm is shown to provide good solution quality for all problems in acceptable computational times. Out of the 41 test instances obtained from QAPLIB, CPTS is shown to meet or exceed the average solution quality of many of the best sequential and parallel approaches from the literature on all but six problems, whereas no other leading method exhibits a performance that is superior to this.  相似文献   

10.
We formulate the multiple knapsack assignment problem (MKAP) as an extension of the multiple knapsack problem (MKP), as well as of the assignment problem. Except for small instances, MKAP is hard to solve to optimality. We present a heuristic algorithm to solve this problem approximately but very quickly. We first discuss three approaches to evaluate its upper bound, and prove that these methods compute an identical upper bound. In this process, reference capacities are derived, which enables us to decompose the problem into mutually independent MKPs. These MKPs are solved euristically, and in total give an approximate solution to MKAP. Through numerical experiments, we evaluate the performance of our algorithm. Although the algorithm is weak for small instances, we find it prospective for large instances. Indeed, for instances with more than a few thousand items we usually obtain solutions with relative errors less than 0.1% within one CPU second.  相似文献   

11.
12.
An algorithm for solving m×n systems of (max,+)-linear equations is presented. The systems have variables on both sides of the equations. After O(m4n4) iterations the algorithm either finds a solution of the system or finds out that no solution exists. Each iteration needs O(mn) operations so that the complexity of the presented algorithm is O(m5n5).  相似文献   

13.
We identify a polynomially solvable special case of the bounded knapsack problem that is characterized by a set of simple inequalities relating item weight ratios to item profit ratios. Our result generalizes and extends a corresponding result of Zukerman, et al. [M. Zukerman, L. Jia, T. Neame, G.J. Woeginger, A polynomially solvable special case of the unbounded knapsack problem, Operations Research Letters 29 (2001) 13-16] for the unbounded knapsack problem.  相似文献   

14.
Several pivot rules for the dual network simplex algorithm that enable it to solve a maximum flow problem on ann-node,m-arc network in at most 2nm pivots and O(n 2 m) time are presented. These rules are based on the concept of apreflow and depend upon the use of node labels which are either the lengths of a shortestpseudoaugmenting path from those nodes to the sink node orvalid underestimates of those lengths. Extended versions of our algorithms are shown to solve an important class of parametric maximum flow problems with no increase in the worst-case pivot and time bounds of these algorithms. This research was supported in part by NSF Grants DMS 91-06195, DMS 94-14438, and CDR 84-21402 and DOE Grant DE-FG02-92ER25126.  相似文献   

15.
Quite recently, Fujishige (Oper. Res. Lett. 31 (2003) 176-178) developed a weakly polynomial-time algorithm for the maximum flow problem by applying the maximum adjacency (MA) ordering technique to directed networks. In this note, we show that the algorithm is not strongly polynomial by giving a real-valued instance for which the algorithm does not terminate.  相似文献   

16.
17.
We present strongly polynomial algorithms to find rational and integer flow vectors that minimize a convex separable quadratic cost function on two-terminal series—parallel graphs.  相似文献   

18.
We give several linear time algorithms for the continuous quadratic knapsack problem. In addition, we report cycling and wrong-convergence examples in a number of existing algorithms, and give encouraging computational results for large-scale problems.   相似文献   

19.
This paper reports on a new algorithm for the Generalized Quadratic Assignment problem (GQAP). The GQAP describes a broad class of quadratic integer programming problems, wherein M pair-wise related entities are assigned to N destinations constrained by the destinations’ ability to accommodate them. This new algorithm is based on a Reformulation Linearization Technique (RLT) dual ascent procedure. Experimental results show that the runtime of this algorithm is as good or better than other known exact solution methods for problems as large as M=20 and N=15. Current address of P.M. Hahn: 2127 Tryon Street, Philadelphia, PA 19146-1228, USA.  相似文献   

20.
We study a variation of the knapsack problem in which each item has a profit, a weight and a penalty; the sum of profits of the selected items minus the largest penalty associated with the selected items must be maximized. We present an ILP formulation and an exact optimization algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号