首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an interior proximal method with Bregman distance, for solving the minimization problem with quasiconvex objective function under nonnegative constraints. The Bregman function is considered separable and zone coercive, and the zone is the interior of the positive orthant. Under the assumption that the solution set is nonempty and the objective function is continuously differentiable, we establish the well definedness of the sequence generated by our algorithm and obtain two important convergence results, and show in the main one that the sequence converges to a solution point of the problem when the regularization parameters go to zero.  相似文献   

2.
In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex locally Lipschitz objective functions on Hadamard manifolds. To reach this goal, we use the concept of Clarke subdifferential on Hadamard manifolds and assuming that the function is bounded from below, we prove the global convergence of the sequence generated by the method to a critical point of the function.  相似文献   

3.
We make a unified analysis of interior proximal methods of solving convex second-order cone programming problems. These methods use a proximal distance with respect to second-order cones which can be produced with an appropriate closed proper univariate function in three ways. Under some mild conditions, the sequence generated is bounded with each limit point being a solution, and global rates of convergence estimates are obtained in terms of objective values. A class of regularized proximal distances is also constructed which can guarantee the global convergence of the sequence to an optimal solution. These results are illustrated with some examples. In addition, we also study the central paths associated with these distance-like functions, and for the linear SOCP we discuss their relations with the sequence generated by the interior proximal methods. From this, we obtain improved convergence results for the sequence for the interior proximal methods using a proximal distance continuous at the boundary of second-order cones.  相似文献   

4.
This paper extends the full convergence of the steepest descent method with a generalized Armijo search and a proximal regularization to solve minimization problems with quasiconvex objective functions on complete Riemannian manifolds. Previous convergence results are obtained as particular cases and some examples in non-Euclidian spaces are given. In particular, our approach can be used to solve constrained minimization problems with nonconvex objective functions in Euclidian spaces if the set of constraints is a Riemannian manifold and the objective function is quasiconvex in this manifold.  相似文献   

5.
Abstract

This paper is devoted to the study of proximal distances defined over symmetric cones, which include the non-negative orthant, the second-order cone and the cone of positive semi-definite symmetric matrices. Specifically, our first aim is to provide two ways to build them. For this, we consider two classes of real-valued functions satisfying some assumptions. Then, we show that its corresponding spectrally defined function defines a proximal distance. In addition, we present several examples and some properties of this distance. Taking into account these properties, we analyse the convergence of proximal-type algorithms for solving convex symmetric cone programming (SCP) problems, and we study the asymptotic behaviour of primal central paths associated with a proximal distance. Finally, for linear SCP problems, we provide a relationship between the proximal sequence and the primal central path.  相似文献   

6.
We study the local convergence of a proximal point method in a metric space under the presence of computational errors. We show that the proximal point method generates a good approximate solution if the sequence of computational errors is bounded from above by some constant. The principle assumption is a local error bound condition which relates the growth of an objective function to the distance to the set of minimizers introduced by Hager and Zhang (SIAM J Control Optim 46:1683–1704, 2007).  相似文献   

7.
The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. It is proved that the primal path converges to the analytic center of the primal optimal set with respect to the entropy function, the dual path converges to a point in the dual optimal set and the primal-dual path associated to this paths converges to a point in the primal-dual optimal set. As an application, the generalized proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered. The convergence of the primal proximal sequence to the analytic center of the primal optimal set with respect to the entropy function is established and the convergence of a particular weighted dual proximal sequence to a point in the dual optimal set is obtained.  相似文献   

8.
This paper deals with the convergence analysis of a second order proximal method for approaching critical points of a smooth and quasiconvex objective function defined on a real Hilbert space. The considered method, well-known in the convex case, unifies proximal method, relaxation and inertial-type extrapolation. The convergence theorems established in this new setting improve recent ones.  相似文献   

9.
In this work, we propose a proximal algorithm for unconstrained optimization on the cone of symmetric semidefinite positive matrices. It appears to be the first in the proximal class on the set of methods that convert a Symmetric Definite Positive Optimization in Nonlinear Optimization. It replaces the main iteration of the conceptual proximal point algorithm by a sequence of nonlinear programming problems on the cone of diagonal definite positive matrices that has the structure of the positive orthant of the Euclidian vector space. We are motivated by results of the classical proximal algorithm extended to Riemannian manifolds with nonpositive sectional curvature. An important example of such a manifold is the space of symmetric definite positive matrices, where the metrics is given by the Hessian of the standard barrier function −lndet(X). Observing the obvious fact that proximal algorithms do not depend on the geodesics, we apply those ideas to develop a proximal point algorithm for convex functions in this Riemannian metric.  相似文献   

10.
In this paper, we study the influence of noise on subgradient methods for convex constrained optimization. The noise may be due to various sources, and is manifested in inexact computation of the subgradients and function values. Assuming that the noise is deterministic and bounded, we discuss the convergence properties for two cases: the case where the constraint set is compact, and the case where this set need not be compact but the objective function has a sharp set of minima (for example the function is polyhedral). In both cases, using several different stepsize rules, we prove convergence to the optimal value within some tolerance that is given explicitly in terms of the errors. In the first case, the tolerance is nonzero, but in the second case, the optimal value can be obtained exactly, provided the size of the error in the subgradient computation is below some threshold. We then extend these results to objective functions that are the sum of a large number of convex functions, in which case an incremental subgradient method can be used.  相似文献   

11.
We study the worst-case convergence rates of the proximal gradient method for minimizing the sum of a smooth strongly convex function and a non-smooth convex function, whose proximal operator is available. We establish the exact worst-case convergence rates of the proximal gradient method in this setting for any step size and for different standard performance measures: objective function accuracy, distance to optimality and residual gradient norm. The proof methodology relies on recent developments in performance estimation of first-order methods, based on semidefinite programming. In the case of the proximal gradient method, this methodology allows obtaining exact and non-asymptotic worst-case guarantees that are conceptually very simple, although apparently new. On the way, we discuss how strong convexity can be replaced by weaker assumptions, while preserving the corresponding convergence rates. We also establish that the same fixed step size policy is optimal for all three performance measures. Finally, we extend recent results on the worst-case behavior of gradient descent with exact line search to the proximal case.  相似文献   

12.
In this paper we present an extension of the proximal point algorithm with Bregman distances to solve constrained minimization problems with quasiconvex and convex objective function on Hadamard manifolds. The proposed algorithm is a modified and extended version of the one presented in Papa Quiroz and Oliveira (J Convex Anal 16(1): 49–69, 2009). An advantage of the proposed algorithm, for the nonconvex case, is that in each iteration the algorithm only needs to find a stationary point of the proximal function and not a global minimum. For that reason, from the computational point of view, the proposed algorithm is more practical than the earlier proximal method. Another advantage, for the convex case, is that using minimal condition on the problem data as well as on the proximal parameters we get the same convergence results of the Euclidean proximal algorithm using Bregman distances.  相似文献   

13.
无限维空间拟凸映射多目标最优化问题解集的连通性   总被引:10,自引:1,他引:10  
本文在一个无限格中引入了拟凸、强拟凸和严格拟凸映射。并在约束集为紧凸条件下,证明了相应的多目标规划问题之有效解集和弱有效解集连通性结果。  相似文献   

14.
Nonlinear rescaling and proximal-like methods in convex optimization   总被引:4,自引:0,他引:4  
The nonlinear rescaling principle (NRP) consists of transforming the objective function and/or the constraints of a given constrained optimization problem into another problem which is equivalent to the original one in the sense that their optimal set of solutions coincides. A nonlinear transformation parameterized by a positive scalar parameter and based on a smooth sealing function is used to transform the constraints. The methods based on NRP consist of sequential unconstrained minimization of the classical Lagrangian for the equivalent problem, followed by an explicit formula updating the Lagrange multipliers. We first show that the NRP leads naturally to proximal methods with an entropy-like kernel, which is defined by the conjugate of the scaling function, and establish that the two methods are dually equivalent for convex constrained minimization problems. We then study the convergence properties of the nonlinear rescaling algorithm and the corresponding entropy-like proximal methods for convex constrained optimization problems. Special cases of the nonlinear rescaling algorithm are presented. In particular a new class of exponential penalty-modified barrier functions methods is introduced. Partially supported by the National Science Foundation, under Grants DMS-9201297, and DMS-9401871. Partially supported by NASA Grant NAG3-1397 and NSF Grant DMS-9403218.  相似文献   

15.
We prove convergence of the whole sequence generated by any of a large class of iterative algorithms for the symmetric linear complementarity problem (LCP), under the only hypothesis that a quadratic form associated with the LCP is bounded below on the nonnegative orthant. This hypothesis holds when the matrix is strictly copositive, and also when the matrix is copositive plus and the LCP is feasible. The proof is based upon the linear convergence rate of the sequence of functional values of the quadratic form. As a by-product, we obtain a decomposition result for copositive plus matrices. Finally, we prove that the distance from the generated sequence to the solution set (and the sequence itself, if its limit is a locally unique solution) have a linear rate of R-convergence.Research for this work was partially supported by CNPq grant No. 301280/86.  相似文献   

16.
This paper is devoted to the study of strong convergence in inexact proximal like methods for finding zeroes of maximal monotone operators in Banach spaces. Convergence properties of proximal point methods in Banach spaces can be summarized as follows: if the operator have zeroes then the sequence of iterates is bounded and all its weak accumulation points are solutions. Whether or not the whole sequence converges weakly to a solution and which is the relation of the weak limit with the initial iterate are key questions. We present a hybrid proximal Bregman projection method, allowing for inexact solutions of the proximal subproblems, that guarantees strong convergence of the sequence to the closest solution, in the sense of the Bregman distance, to the initial iterate.  相似文献   

17.
In this paper, we propose two interior proximal algorithms inspired by the logarithmic-quadratic proximal method. The first method we propose is for general linearly constrained quasiconvex minimization problems. For this method, we prove global convergence when the regularization parameters go to zero. The latter assumption can be dropped when the function is assumed to be pseudoconvex. We also obtain convergence results for quasimonotone variational inequalities, which are more general than monotone ones.  相似文献   

18.
This paper considers planar location problems with rectilinear distance and barriers where the objective function is any convex, nondecreasing function of distance. Such problems have a non-convex feasible region and a nonconvex objective function. Based on an equivalent problem with modified barriers, derived in a companion paper [3], the non convex feasible set is partitioned into a network and rectangular cells. The rectangular cells are further partitioned into a polynomial number of convex subcells, called convex domains, on which the distance function, and hence the objective function, is convex. Then the problem is solved over the network and convex domains for an optimal solution. Bounds are given that reduce the number of convex domains to be examined. The number of convex domains is bounded above by a polynomial in the size of the problem.  相似文献   

19.
锥拟凸集值映射多目标优化的解集的连通性   总被引:1,自引:0,他引:1  
凌晨 《运筹学学报》2001,5(2):33-40
在一般拓扑向量空间中,本文引进了一类锥进凸(锥严格拟凸)集值映射。并在目标映射是锥拟凸(锥严格拟凸)和上半连续的条件下,利用Minkowski泛函,证明了弱有效解(有效解)集是连通的。文[9]中的结论是本文所得结果大目标映射为单值和拓扑空间为格的情况下的特例。  相似文献   

20.
Within the context of cone-ordered topological vector spaces, this paper introduces the concepts of cone bounded point and cone bounded set for vector set. With their aid, a class of new cone quasiconvex mappings in topological vector spaces is defined, and their fundamental properties are presented. The relationships between the cone bounded quasiconvex mapping defined in this paper and cone convex mapping, and other known cone quasiconvex mapping are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号