首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a consensus model for group decision making with interval multiplicative and fuzzy preference relations based on two consensus criteria: (1) a consensus measure which indicates the agreement between experts’ preference relations and (2) a measure of proximity to find out how far the individual opinions are from the group opinion. These measures are calculated by using the relative projections of individual preference relations on the collective one, which are obtained by extending the relative projection of vectors. First, the weights of experts are determined by the relative projections of individual preference relations on the initial collective one. Then using the weights of experts, all individual preference relations are aggregated into a collective one. The consensus and proximity measures are calculated by using the relative projections of experts’ preference relations respectively. The consensus measure is used to guide the consensus process until the collective solution is achieved. The proximity measure is used to guide the discussion phase of consensus reaching process. In such a way, an iterative algorithm is designed to guide the experts in the consensus reaching process. Finally the expected value preference relations are defined to transform the interval collective preference relation to a crisp one and the weights of alternatives are obtained from the expected value preference relations. Two numerical examples are given to illustrate the models and approaches.  相似文献   

2.
In this paper, based on the transfer relationship between reciprocal preference relation and multiplicative preference relation, we proposed a least deviation method (LDM) to obtain a priority vector for group decision making (GDM) problems where decision-makers' (DMs') assessments on alternatives are furnished as incomplete reciprocal preference relations with missing values. Relevant theorems are investigated and a convergent iterative algorithm about LDM is developed. Using three numerical examples, the LDM is compared with the other prioritization methods based on two performance evaluation criteria: maximum deviation and maximum absolute deviation. Statistical comparative study, complexity of computation of different algorithms, and comparative analyses are provided to show its advantages over existing approaches.  相似文献   

3.
We consider a group decision-making problem where preferences given by the experts are articulated into the form of pairwise comparison matrices. In many cases, experts are not able to efficiently provide their preferences on some aspects of the problem because of a large number of alternatives, limited expertise related to some problem domain, unavailable data, etc., resulting in incomplete pairwise comparison matrices. Our goal is to develop a computational method to retrieve a group priority vector of the considered alternatives dealing with incomplete information. For that purpose, we have established an optimization problem in which a similarity function and a parametric compromise function are defined. Associated to this problem, a logarithmic goal programming formulation is considered to provide an effective procedure to compute the solution. Moreover, the parameters involved in the method have a clear meaning in the context of group problems.  相似文献   

4.
The aim of this paper is to present a logarithmic least squares method (LLSM) to priority for group decision making with incomplete fuzzy preference relations. We give a reasonable definition of multiplicative consistent for incomplete fuzzy preference relation. We develop the acceptable fuzzy consistency ratio (FCR for short), which is simple and similar to Saaty’s consistency ratio CR for multiplicative fuzzy preference relations. We also extend the LLSM method to the case of individual preference relation with complete information. Finally, some examples are illustrated to show that our method is simple, efficient, and can be performed on computer easily.  相似文献   

5.
Decision makers (DMs)’ preferences on decision alternatives are often characterized by multiplicative or fuzzy preference relations. This paper proposes a chi-square method (CSM) for obtaining a priority vector from multiplicative and fuzzy preference relations. The proposed CSM can be used to obtain a priority vector from either a multiplicative preference relation (i.e. a pairwise comparison matrix) or a fuzzy preference relation or a group of multiplicative preference relations or a group of fuzzy preference relations or their mixtures. Theorems and algorithm about the CSM are developed. Three numerical examples are examined to illustrate the applications of the CSM and its advantages.  相似文献   

6.
This paper presents a goal programming model that allows for the flexible handling of the two group classification problem. The goal programming model is based around the concepts of non-standard preference functions and penalty function modelling. An extension to a generalised distance metric case is given. The inclusion of multiple levels of classification based upon different levels of certainty is incorporated into the model. The model is tested on a real-life data set pertaining to cinema-going attendance and conclusions are drawn both in the context of the methodology and of the application.  相似文献   

7.
This paper analyses the mechanisms through which binding finance constraints can induce debt-constrained firms to improve technical efficiency to guarantee positive profits. This hypothesis is tested on a sample of firms belonging to the Italian manufacturing. Technical efficiency scores are computed by estimating parametric production frontiers using the one stage approach as in Battese and Coelli [Battese, G., Coelli, T., 1995. A model for technical efficiency effects in a stochastic frontier production function for panel data. Empirical Economics 20, 325–332]. The results support the hypothesis that a restriction in the availability of financial resources can affect positively efficiency.  相似文献   

8.
In [R.R. Yager, D.P. Filev, Operations for granular computing: Mixing words and numbers, in: Proceedings of the FUZZ-IEEE World Congress on Computational Intelligence, Anchorage, 1998, pp. 123–128] Yager and Filev introduced the Induced Ordered Weighted Averaging (IOWA) operator. In this paper, we provide some IOWA operators to aggregate fuzzy preference relations in group decision-making (GDM) problems. These IOWA operators when guided by fuzzy linguistic quantifiers allow the introduction of some semantics or meaning in the aggregation, and therefore allow for a better control over the aggregation stage developed in the resolution process of the GDM problems. In particular, we present the Importance IOWA (I-IOWA) operator, which applies the ordering of the argument values based upon the importance of the information sources; the Consistency IOWA (C-IOWA) operator, which applies the ordering of the argument values based upon the consistency of the information sources; and the Preference IOWA (P-IOWA) operator, which applies the ordering of the argument values based upon the relative preference values associated to each one of them. We provide a procedure to deal with ‘ties’ in respect to the ordering induced by the application of one of these IOWA operators; it consists of a sequential application of the above IOWA operators. We also present a selection process for GDM problems based on the concept of fuzzy majority and the above three IOWA operators. Finally, we analyse the reciprocity and consistency properties of the collective fuzzy preference relations obtained using IOWA operators.  相似文献   

9.
In this paper, we extend the eigenvector method (EM) to priority for an incomplete fuzzy preference relation. We give a reasonable definition of multiplicative consistency for an incomplete fuzzy preference relation. We also give an approach to judge whether an incomplete fuzzy relation is acceptable or not. We develop the acceptable consistency ratio for an incomplete multiplicative fuzzy preference relation, which is simple and similar to Saaty’s consistency ratio (CR) for the multiplicative preference relation. If the incomplete fuzzy preference relation is not of acceptable consistency, we define a criterion to find the unusual and false element (UFE) in the preference relation, and present an algorithm to repair an inconsistent fuzzy preference relation until its consistency is satisfied with the consistency ratio. As a result, our improvement method cannot only satisfy the consistency requirement, but also preserve the initial preference information as much as possible. Finally, an example is illustrated to show that our method is simple, efficiency, and can be performed on computer easily.  相似文献   

10.
An intuitionistic preference relation is a powerful means to express decision makers’information of intuitionistic preference over criteria in the process of multi-criteria decision making. In this paper, we first define the concept of its consistence and give the equivalent interval fuzzy preference relation of it. Then we develop a method for estimating criteria weights from it, and then extend the method to accommodate group decision making based on them And finally, we use some numerical examples to illustrate the feasibility and validity of the developed method.  相似文献   

11.
This paper presents a model which has been designed to decide the number of advertisement in different advertising media and the optimal allocation of the budget assigned to the different media. The main objective of this problem is to maximize the reach to the desired section of people for different media within their maximum allowable budget without violating the max and min number of advertisement goals. The media have been considered as different newspapers and different channels in Televisions. Here in this article the model has been formulated in such a way that the advertisement should reach to those who are suitable for the product instead of going to those section who are not considered suitable for the product as well. A chance constrained goal programming model has been designed after considering the parameter corresponding to reach for different media as random variables. The random variables in this case has been considered as values which have known mean and standard deviations. A case for an upcoming institution who are interested to advertise for its two years Post Graduate Diploma in Management (PGDM) programme to the different newspapers and television channels has been designed to illustrate the solution methodology.  相似文献   

12.
In this paper, a new method for comparing fuzzy numbers based on a fuzzy probabilistic preference relation is introduced. The ranking order of fuzzy numbers with the weighted confidence level is derived from the pairwise comparison matrix based on 0.5-transitivity of the fuzzy probabilistic preference relation. The main difference between the proposed method and existing ones is that the comparison result between two fuzzy numbers is expressed as a fuzzy set instead of a crisp one. As such, the ranking order of n fuzzy numbers provides more information on the uncertainty level of the comparison. Illustrated by comparative examples, the proposed method overcomes certain unreasonable (due to the violation of the inequality properties) and indiscriminative problems exhibited by some existing methods. More importantly, the proposed method is able to provide decision makers with the probability of making errors when a crisp ranking order is obtained. The proposed method is also able to provide a probability-based explanation for conflicts among the comparison results provided by some existing methods using a proper ranking order, which ensures that ties of alternatives can be broken.  相似文献   

13.
Decision-making information provided by decision makers is often imprecise or uncertain, due to lack of data, time pressure, or the decision makers’ limited attention and information-processing capabilities. Interval-valued fuzzy sets are associated with greater imprecision and more ambiguity than are ordinary fuzzy sets. For these reasons, this paper presents a signed distance-based method for handling fuzzy multiple-criteria group decision-making problems in which individual assessments are provided as generalized interval-valued trapezoidal fuzzy numbers, and the information about criterion weights are not precisely but partially known. First, concerning the relative importance of decision makers and the group consensus of fuzzy opinions, all individual decision opinions were aggregated into group opinions using a hybrid average with weighted averaging and signed distance-based ordered weighted averaging operations. Next, considering a decision situation with incomplete weight information of criteria, an integrated programming model was developed to estimate criterion weights and to order the priorities of various alternatives based on signed distances. In addition, several deviation variables were introduced to mitigate the effect of inconsistent evaluations on the importance of criteria. Finally, the feasibility of the proposed method is illustrated by a numerical example of a multi-criteria supplier selection problem. Furthermore, a comparative analysis with other methods was conducted to validate the effectiveness and applicability of the proposed methodology.  相似文献   

14.
This paper presents a weight sensitivity algorithm that can be used to investigate a portion of weight space of interest to the decision maker in a goal or multiple objective programme. The preferential information required from the decision maker is an initial estimate of their starting solution, with an equal weights solution being used as a default if this is not available, and preference information that will define the portion of weight space on which the sensitivity analysis is to be conducted. The different types of preferential information and how they are incorporated by the algorithm are discussed. The output of the algorithm is a set of distinct solutions that characterise the portion of weight space searched. The possible different output requirements of decision makers are detailed in the context of the algorithm.The methodology is demonstrated on two examples, one hypothetical and the other relating to predicting cinema-going behaviour. Conclusions and avenues for future research are given.  相似文献   

15.
Because of the existence of non-stochastic factors in stock markets, several possibilistic portfolio selection models have been proposed, where the expected return rates of securities are considered as fuzzy variables with possibilistic distributions. This paper deals with a possibilistic portfolio selection model with interval center values. By using modality approach and goal attainment approach, it is converted into a nonlinear goal programming problem. Moreover, a genetic algorithm is designed to obtain a satisfactory solution to the possibilistic portfolio selection model under complicated constraints. Finally, a numerical example based on real world data is also provided to illustrate the effectiveness of the genetic algorithm.  相似文献   

16.
This paper addresses the problem of scheduling the tour of a marketing executive (ME) of a large electronics manufacturing company in India. In this problem, the ME has to visit a number of customers in a given planning period. The scheduling problem taken up in this study is different from the various personnel scheduling problems addressed in the literature. This type of personnel scheduling problem can be observed in many other situations such as periodical visits of inspection officers, tour of politicians during election campaigns, tour of mobile courts, schedule of mobile stalls in various areas, etc. In this paper the tour scheduling problem of the ME is modeled using (0–1) goal programming (GP). The (0–1) GP model for the data provided by the company for 1 month has 802 constraints and 1167 binary variables. The model is solved using LINDO software package. The model takes less than a minute (on a 1.50 MHz Pentium machine with 128 MB RAM) to get a solution of the non-preemptive version and about 6 days for the preemptive version. The main contribution is in problem definition and development of the mathematical model for scheduling the tour.  相似文献   

17.
This paper proposes a new nonlinear interval programming method that can be used to handle uncertain optimization problems when there are dependencies among the interval variables. The uncertain domain is modeled using a multidimensional parallelepiped interval model. The model depicts single-variable uncertainty using a marginal interval and depicts the degree of dependencies among the interval variables using correlation angles and correlation coefficients. Based on the order relation of interval and the possibility degree of interval, the uncertain optimization problem is converted to a deterministic two-layer nesting optimization problem. The affine coordinate is then introduced to convert the uncertain domain of a multidimensional parallelepiped interval model to a standard interval uncertain domain. A highly efficient iterative algorithm is formulated to generate an efficient solution for the multi-layer nesting optimization problem after the conversion. Three computational examples are given to verify the effectiveness of the proposed method.  相似文献   

18.
Deriving accurate interval weights from interval fuzzy preference relations is key to successfully solving decision making problems. Xu and Chen (2008) proposed a number of linear programming models to derive interval weights, but the definitions for the additive consistent interval fuzzy preference relation and the linear programming model still need to be improved. In this paper, a numerical example is given to show how these definitions and models can be improved to increase accuracy. A new additive consistency definition for interval fuzzy preference relations is proposed and novel linear programming models are established to demonstrate the generation of interval weights from an interval fuzzy preference relation.  相似文献   

19.
This paper describes a detailed simulation model for healthcare planning in a medical assessment unit (MAU) of a general hospital belonging to the national health service (NHS), UK. The MAU is established to improve the quality of care given to acute medical patients on admission, and to provide the organisational means of rapid assessment and investigation in order to avoid unnecessary admissions. The simulation model enables different scenarios to be tested to eliminate bottlenecks in order to achieve optimal clinical workflow. The link between goal programming (GP) and simulation for efficient resource planning is explored. A GP model is developed for trade-off analysis of the results obtained from the simulation. The implications of MAU management preferences to various objectives are presented.  相似文献   

20.
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which “the more/higher, the better” and “the less/lower, the better” in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号