首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
We generalise the current theory of optimal strong convergence rates for implicit Euler-based methods by allowing for Poisson-driven jumps in a stochastic differential equation (SDE). More precisely, we show that under one-sided Lipschitz and polynomial growth conditions on the drift coefficient and global Lipschitz conditions on the diffusion and jump coefficients, three variants of backward Euler converge with strong order of one half. The analysis exploits a relation between the backward and explicit Euler methods.  相似文献   

2.
In this paper, we present the composite Milstein methods for the strong solution of Ito stochastic differential equations. These methods are a combination of semi-implicit and implicit Milstein methods. We give a criterion for choosing either the implicit or the semi-implicit scheme at each step of our numerical solution. The stability and convergence properties are investigated and discussed for the linear test equation. The convergence properties for the nonlinear case are shown numerically to be the same as the linear case. The stability properties of the composite Milstein methods are found to be more superior compared to those of the Milstein, the Euler and even better than the composite Euler method. This superiority in stability makes the methods a better candidate for the solution of stiff SDEs.  相似文献   

3.
In this paper we discuss split-step forward methods for solving Itô stochastic differential equations (SDEs). Eight fully explicit methods, the drifting split-step Euler (DRSSE) method, the diffused split-step Euler (DISSE) method and the three-stage Milstein (TSM 1a-TSM 1f) methods, are constructed based on Euler-Maruyama method and Milstein method, respectively, in this paper. Their order of strong convergence is proved. The analysis of stability shows that the mean-square stability properties of the methods derived in this paper are improved on the original methods. The numerical results show the effectiveness of these methods in the pathwise approximation of Itô SDEs.  相似文献   

4.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. Numerical approximation schemes are invaluable tools for exploring their properties. In this paper, we introduce a class of stochastic age-dependent (vintage) capital system with Poisson jumps. We also give the discrete approximate solution with an implicit Euler scheme in time discretization. Using Gronwall’s lemma and Barkholder-Davis-Gundy’s inequality, some criteria are obtained for the exponential stability of numerical solutions to the stochastic age-dependent capital system with Poisson jumps. It is proved that the numerical approximation solutions converge to the analytic solutions of the equations under the given conditions, where information on the order of approximation is provided. These error bounds imply strong convergence as the timestep tends to zero. A numerical example is used to illustrate the theoretical results.  相似文献   

5.
本文讨论了用隐式Euler方法求解一类延迟量满足Lipschitz条件且Lipschitz常数小于1的非线性变延迟微分方程初值问题的收敛性.获得了带线性插值的隐式Euler方法的收敛性结果.  相似文献   

6.
This work investigates strong convergence of numerical schemes for nonlinear multiplicative noise driving stochastic partial differential equations under some weaker conditions imposed on the coefficients avoiding the commonly used global Lipschitz assumption in the literature. Space-time fully discrete scheme is proposed, which is performed by the finite element method in space and the implicit Euler method in time. Based on some technical lemmas including regularity properties for the exact solution of the considered problem, strong convergence analysis with sharp convergence rates for the proposed fully discrete scheme is rigorously established.  相似文献   

7.
We consider backward stochastic differential equations with drivers of quadratic growth (qgBSDE). We prove several statements concerning path regularity and stochastic smoothness of the solution processes of the qgBSDE, in particular we prove an extension of Zhang’s path regularity theorem to the quadratic growth setting. We give explicit convergence rates for the difference between the solution of a qgBSDE and its truncation, filling an important gap in numerics for qgBSDE. We give an alternative proof of second order Malliavin differentiability for BSDE with drivers that are Lipschitz continuous (and differentiable), and then derive an analogous result for qgBSDE.  相似文献   

8.
In this paper, we are interested in numerical solutions of stochastic functional differential equations with jumps. Under a global Lipschitz condition, we show that the pth-moment convergence of Euler-Maruyama numerical solutions to stochastic functional differential equations with jumps has order 1/p for any p≥2. This is significantly different from the case of stochastic functional differential equations without jumps, where the order is 1/2 for any p≥2. It is therefore best to use the mean-square convergence for stochastic functional differential equations with jumps. Moreover, under a local Lipschitz condition, we reveal that the order of mean-square convergence is close to 1/2, provided that local Lipschitz constants, valid on balls of radius j, do not grow faster than logj.  相似文献   

9.
In this paper, we deal with the strong convergence of numerical methods for stochastic differential equations with piecewise continuous arguments (SEPCAs) with at most polynomially growing drift coefficients and global Lipschitz continuous diffusion coefficients. An explicit and time-saving tamed Euler method is used to solve this type of SEPCAs. We show that the tamed Euler method is bounded in pth moment. And then the convergence of the tamed Euler method is proved. Moreover, the convergence order is one-half. Several numerical simulations are shown to verify the convergence of this method.  相似文献   

10.
In this paper, by composite previous-current-step idea, we propose two numerical schemes for solving the Itô stochastic differential systems. Our approaches, which are based on the Euler–Maruyama method, solve stochastic differential systems with strong sense. The mean-square convergence theory of these methods are analyzed under the Lipschitz and linear growth conditions. The accuracy and efficiency of the proposed numerical methods are examined by linear and nonlinear stochastic differential equations.  相似文献   

11.
杨旭  赵卫东 《计算数学》2022,44(2):163-177
本文研究跳适应向后Euler方法求解跳扩散随机微分方程在非全局Lipschitz条件下的强收敛性.通过克服方程非全局Lipschitz系数给收敛性分析带来的主要困难,我们成功地建立了跳适应后向Euler方法的强收敛性结果并得到相应的收敛率.最后,我们通过数值试验对前文所得理论结果做进一步的验证.  相似文献   

12.
Stochastic differential equations are often simulated with the Monte Carlo Euler method. Convergence of this method is well understood in the case of globally Lipschitz continuous coefficients of the stochastic differential equation. However, the important case of superlinearly growing coefficients has remained an open question. The main difficulty is that numerically weak convergence fails to hold in many cases of superlinearly growing coefficients. In this paper we overcome this difficulty and establish convergence of the Monte Carlo Euler method for a large class of one-dimensional stochastic differential equations whose drift functions have at most polynomial growth.  相似文献   

13.
We present new algorithms for weak approximation of stochastic differential equations driven by pure jump Lévy processes. The method uses adaptive non-uniform discretization based on the times of large jumps of the driving process. To approximate the solution between these times we replace the small jumps with a Brownian motion. Our technique avoids the simulation of the increments of the Lévy process, and in many cases achieves better convergence rates than the traditional Euler scheme with equal time steps. To illustrate the method, we discuss an application to option pricing in the Libor market model with jumps.  相似文献   

14.
This paper deals with the almost sure exponential stability of the Euler-type methods for nonlinear stochastic delay differential equations with jumps by using the discrete semimartingale convergence theorem. It is shown that the explicit Euler method reproduces the almost sure exponential stability under an additional linear growth condition. By replacing the linear growth condition with the one-sided Lipschitz condition, the backward Euler method is able to reproduce the stability property.  相似文献   

15.
In this paper for the approximate solution of stochastic partial differential equations (SPDEs) of Itô-type, the stability and application of a class of finite difference method with regard to the coefficients in the equations is analyzed. The finite difference methods discussed here will be either explicit or implicit and a comparison between them will be reported. We prove the consistency and stability of these methods and investigate the influence of the multiplier (particularly multiplier of the random noise) in mean square stability. From stochastic version of Lax-Richtmyer the convergence of these methods under some conditions are established. Numerical experiments are included to show the efficiency of the methods.  相似文献   

16.
We construct a non-standard finite difference numerical scheme to approximate stochastic differential equations (SDEs) using the idea of weighed step introduced by R.E. Mickens. We prove the strong convergence of our scheme under locally Lipschitz conditions of a SDE and linear growth condition. We prove the preservation of domain invariance by our scheme under a minimal condition depending on a discretization parameter and unconditionally for the expectation of the approximate solution. The results are illustrated through the geometric Brownian motion. The new scheme shows a greater behaviour compared with the Euler–Maruyama scheme and balanced implicit methods which are widely used in the literature and applications.  相似文献   

17.
This paper considers semilinear stochastic differential equations in Hilbert spaces with Lipschitz nonlinearities and with the noise terms driven by sequences of independent scalar Wiener processes (Brownian motions). The interpretation of such equations requires a stochastic integral. By means of a series of Itô integrals, an elementary and direct construction of a Hilbert space valued stochastic integral with respect to a sequence of independent scalar Wiener processes is given. As an application, existence and strong and weak uniqueness for the stochastic differential equation are shown by exploiting the series construction of the integral.  相似文献   

18.
In this paper we consider Runge-Kutta methods for jump-diffusion differential equations. We present a study of their mean-square convergence properties for problems with multiplicative noise. We are concerned with two classes of Runge-Kutta methods. First, we analyse schemes where the drift is approximated by a Runge-Kutta ansatz and the diffusion and jump part by a Maruyama term and second we discuss improved methods where mixed stochastic integrals are incorporated in the approximation of the next time step as well as the stage values of the Runge-Kutta ansatz for the drift. The second class of methods are specifically developed to improve the accuracy behaviour of problems with small noise. We present results showing when the implicit stochastic equations defining the stage values of the Runge-Kutta methods are uniquely solvable. Finally, simulation results illustrate the theoretical findings.  相似文献   

19.
In this paper, we investigate the existence and uniqueness of solutions to stochastic differential delay equations under a local Lipschitz condition but without linear growth condition on its coefficients. Moreover, we prove convergence in probability of the Euler–Maruyama approximation as well as of the stochastic theta method approximation to the exact solution.  相似文献   

20.
Abstract

In this article, we investigate the strong convergence of the Euler–Maruyama method and stochastic theta method for stochastic differential delay equations with jumps. Under a global Lipschitz condition, we not only prove the strong convergence, but also obtain the rate of convergence. We show strong convergence under a local Lipschitz condition and a linear growth condition. Moreover, it is the first time that we obtain the rate of the strong convergence under a local Lipschitz condition and a linear growth condition, i.e., if the local Lipschitz constants for balls of radius R are supposed to grow not faster than log R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号