首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric bus scheduling problem can be defined as vehicle scheduling problem with route and fueling time constraints (VSPRFTC). Every vehicle’s travel miles (route time) after charging is limited, thus the vehicle must be recharged after taking several trips and the minimal charging time (fueling time) must be satisfied. A multiple ant colony algorithm (ACA) was presented to solve VSPRFTC based on ACA used to solve traveling salesman problem (TSP), a new metaheuristic approach inspired by the foraging behavior of real colonies of ants. The VSPRFTC considered in this paper minimizes a multiple, hierarchical objective function: the first objective is to minimize the number of tours (or vehicles) and the second is to minimize the total deadhead time. New improvement of ACA as well as detailed operating steps was provided on the basis of former algorithm. Then in order to settle contradiction between accelerating convergence and avoiding prematurity or stagnation, improvement on route construction rule and Pheromone updating rule was adopted. A group feasible trip sets (blocks) had been produced after the process of applying ACA. In dealing with the fueling time constraint a bipartite graphic model and its optimization algorithm are developed for trip set connecting in a hub and spoke network system to minimize the number of vehicle required. The maximum matching of the bipartite graph is obtained by calculating the maximum inflow with the Ford–Fulkerson algorithm. At last, an example was analyzed to demonstrate the correctness of the application of this algorithm. It proved to be more efficient and robust in solving this problem.  相似文献   

2.
This paper studies the vehicle routing problem with multiple trips and time windows, in which vehicles are allowed to perform multiple trips during a scheduling period and each customer must be served within a given time interval. The problem is of particular importance for planning fleets of hired vehicles in common practices, such as e-grocery distributions, but this problem has received little attention in the literature. As a result of the multi-layered structure characteristic of the problem solution, we propose a pool-based metaheuristic in which various routes are first constructed to fill a pool, following which some of the routes are selected and combined to form vehicle working schedules. Finally, we conduct a series of experiments over a set of benchmark instances to evaluate and demonstrate the effectiveness of the proposed metaheuristic.  相似文献   

3.
This paper addresses the problem of finding an effective distribution plan to deliver free newspapers from a production plant to subway, bus, or tram stations. The overall goal is to combine two factors: first, the free newspaper producing company wants to minimize the number of vehicle trips needed to distribute all newspapers produced at the production plant. Second, the company is interested in minimizing the time needed to consume all newspapers, i.e., the time needed to get all the newspapers taken by the final readers. The resulting routing problem combines aspects of the vehicle routing problem with time windows, the inventory routing problem, and additional constraints related to the production schedule. We propose a formulation and different heuristic approaches, as well as a hybrid method. Computational tests with real world data show that the hybrid method is the best in various problem settings.  相似文献   

4.
The vehicle scheduling problem, arising in public transport bus companies, addresses the task of assigning buses to cover a given set of timetabled trips with consideration of practical requirements, such as multiple depots and vehicle types as well as depot capacities. An optimal schedule is characterized by minimal fleet size and minimal operational costs including costs for unloaded trips and waiting time. This paper discusses the multi-depot, multi-vehicle-type bus scheduling problem (MDVSP), involving multiple depots for vehicles and different vehicle types for timetabled trips. We use time–space-based instead of connection-based networks for MDVSP modeling. This leads to a crucial size reduction of the corresponding mathematical models compared to well-known connection-based network flow or set partitioning models. The proposed modeling approach enables us to solve real-world problem instances with thousands of scheduled trips by direct application of standard optimization software. To our knowledge, the largest problems that we solved to optimality could not be solved by any existing exact approach. The presented research results have been developed in co-operation with the provider of transportation planning software PTV AG. A software component to support planners in public transport was designed and implemented in context of this co-operation as well.  相似文献   

5.
Consider a set of trips where each trip is specified a priori by a place of origin, a destination, a duration, a cost and a time interval within which the trip must begin. The trips may include visits to one or more specific points. Our problem is to determine the number of vehicles required together with their routes and schedules, so that each trip begins within his given time interval, while the fixed costs related to the number of vehicles, and the travel costs between trips are minimized. The problem is a generalization of the m-travelling salesman problem.We compare numerical results for 3 algorithms developed by our research team:
  • 1.(1) Column generation on a set partitioning problem solved by simplex and branch-and-bound; columns are generated by a shortest path algorithm with time constraints on the nodes.
  • 2.(2) Adaptation of the Carpaneto-Toth algorithm for the asymmetric travelling salesman problem: solution of network problems by relaxing scheduling constraints, and branch-and-bound on flow variables.
  • 3.(3) Solution of network problems by relaxing scheduling constraints and branch-and-bound based on dividing the time windows.
  相似文献   

6.
The school bus routing problem: A review   总被引:2,自引:0,他引:2  
This paper aims to provide a comprehensive review of the school bus routing problem (SBRP). SBRP seeks to plan an efficient schedule for a fleet of school buses where each bus picks up students from various bus stops and delivers them to their designated schools while satisfying various constraints such as the maximum capacity of a bus, the maximum riding time of a student in a bus, and the time window of a school. This class of problem consists of different sub-problems involving data preparation, bus stop selection, bus route generation, school bell time adjustment, and bus scheduling. In this paper, the various assumptions, constraints, and solution methods used in the literature on SBRP are summarized. A list of issues requiring further research is also presented.  相似文献   

7.
In this paper we present two approaches for solving a real-world vehicle routing problem arising in the air cargo road feeder service business. The problem is to combine transportation tasks from a given timetable to trips which have to be assigned to tractors and which can be operated by tractor drivers respecting the restrictive rules on driving times from EC Regulation No. 561/2006. Tractor trips which start and end at the hub can be combined to multiple-trips which are operated by the same tractor. Also, to each trip a trailer has to be assigned which is compatible with all tasks in the trip. The primary objective is to minimize the number of required tractors, i.e. the number of multiple-trips. The methods developed are currently applied in practice.  相似文献   

8.
This article tackles the multi-trip vehicle routing problem with time windows and limited duration. A trip is a timed route such that a succession of trips can be assigned to one vehicle. We provide an exact two-phase algorithm to solve it. The first phase enumerates possible ordered lists of clients which match the maximum trip duration criterion. The second phase uses a Branch and Price scheme to generate and choose a best set of trips so that all customers are visited. We propose a set covering formulation as the column generation master problem, where columns (variables) represent trips. The sub-problem selects appropriate timing for trips and has a pseudo-polynomial complexity. Computational results on Solomon’s benchmarks are presented. The computational times obtained with our new algorithm are much lower than the ones recently obtained in the only two studies published on this problem to date.  相似文献   

9.
Vehicle scheduling for a fixed time-table is easy to formulate and solve as a minimal-cost-flow problem. Normally, however, there is considerable flexibility in the time-table. We propose here a method for exploiting this flexibility in order to improve the vehicle scheduling.A given set of trips must be assigned to a fleet of identical vehicles, starting from a common garage. Each trip is characterized by initial stop, final stop, duration, earliest departure time, and latest departure time.The problem is to decide which vehicle should be assigned to each individual trip and when the trip should start, so that a generalized cost is minimized.The minimum-cost-flow problem is first solved for the ‘kernels’ of every trip in order to make clear when the critical time-periods occur and obtain a lower bound for the solution. The kernel is defined as a trip that starts at the latest possible departure time and finishes at the earliest possible arriving time.The departure time for each trip is then chosen, thereby increasing the chances of obtaining a good schedule. The minimum-cost-flow problem is then solved for this fixed time-table.Finally, the departure times for each vehicle are adjusted (blocked) so that each vehicle (and driver) is efficiently used. This method is used as an integral part of the Volvo Traffic Planning Package.  相似文献   

10.
介绍了一个求解有时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)的启发式算法——基于λ-交换的局部下降搜索算法(Local search descent method based on λ-interchange).VRPTW是指合理安排车辆行驶路线,为一组预先设定有时间限制的客户运送货物,在不违反时间要求和车辆容量限制的条件下使得成本最小.它是一个典型的NP-难题,可以通过启发式算法获得近优解来解决.通过两个实验验证,显示了局部下降搜索算法的优良性能,取得了很好的效果,可以作为进一步研究复杂算法的基础.  相似文献   

11.
A post-improvement procedure for the mixed load school bus routing problem   总被引:1,自引:0,他引:1  
This paper aims to develop a mixed load algorithm for the school bus routing problem (SBRP) and measure its effects on the number of required vehicles. SBRP seeks to find optimal routes for a fleet of vehicles, where each vehicle transports students from their homes and to their schools while satisfying various constraints. When mixed load is allowed, students of different schools can get on the same bus at the same time. Although many of real world SBRP allow mixed load, only a few studies have considered these cases. In this paper, we present a new mixed load improvement algorithm and compare it with the only existing algorithm from the literature. Benchmark problems are proposed to compare the performances of algorithms and to stimulate other researchers’ further study. The proposed algorithm outperforms the existing algorithm on the benchmark problem instances. It has also been successfully applied to some of real-world SBRP and could reduce the required number of vehicles compared with the current practice.  相似文献   

12.
In real life distribution of goods, relatively long service times may make it difficult to serve all requests during regular working hours. These difficulties are even greater if the beginning of the service in each demand site must occur within a time window and violations of routing time restrictions are particularly undesirable. We address this situation by considering a variant of the vehicle routing problem with time windows for which, besides routing and scheduling decisions, a number of extra deliverymen can be assigned to each route in order to reduce service times. This problem appears, for example, in the distribution of beverage and tobacco in highly dense Brazilian urban areas. We present a mathematical programming formulation for the problem, as well as a tabu search and an ant colony optimization heuristics for obtaining minimum cost routes. The performance of the model and the heuristic approaches are evaluated using instances generated from a set of classic examples from the literature.  相似文献   

13.
The paper describes a system for the solution of a static dial-a-ride routing and scheduling problem with time windows (DARPTW). The problem statement and initialization of the development project was made by the Copenhagen Fire-Fighting Service (CFFS). The CFFS needed a new system for scheduling elderly and disabled persons, involving about 50.000 requests per year. The problem is characterized by, among other things, multiple capacities and multiple objectives. The capacities refer to the fact that a vehicle may be equipped with e.g. normal seats, children seats or wheel chair places. The objectives relate to a number of concerns such as e.g. short driving time, high vehicle utilization or low costs. A solution algorithm REBUS based on an insertion heuristics was developed. The algorithm permits in a flexible way weighting of the various goals such that the solution reflects the user's preferences. The algorithm is implemented in a dynamic environment intended for on-line scheduling. Thus, a new request for service is treated in less than 1 second, permitting an interactive user interface.  相似文献   

14.
In this article we introduce the vehicle routing problem with coupled time windows (VRPCTW), which is an extension of the vehicle routing problem with time windows (VRPTW), where additional coupling constraints on the time windows are imposed. VRPCTW is applied to model a real-world planning problem concerning the integrated optimization of school starting times and public bus services. A mixed-integer programming formulation for the VRPCTW within this context is given. It is solved using a new meta-heuristic that combines classical construction aspects with mixed-integer preprocessing techniques, and improving hit-and-run, a randomized search strategy from global optimization. Solutions for several randomly generated and real-world instances are presented.  相似文献   

15.
We present a bulk ship scheduling problem that is a combined multi-ship pickup and delivery problem with time windows (m-PDPTW) and multi-allocation problem. In contrast to other ship scheduling problems found in the literature, each ship in the fleet is equipped with a flexible cargo hold that can be partitioned into several smaller holds in a given number of ways. Therefore, multiple products can be carried simultaneously by the same ship. The scheduling of the ships constitutes the m-PDPTW, while the partition of the ships' flexible cargo holds and the allocation of cargoes to the smaller holds make the multi-allocation problem. A set partitioning approach consisting of two phases is proposed for the combined ship scheduling and allocation problem. In the first phase, a number of candidate schedules (including allocation of cargoes to the ships' cargo holds) is generated for each ship. In the second phase, we minimise transportation costs by solving a set partitioning problem where the columns are the candidate schedules generated in phase one. The computational results show that the proposed approach works, and optimal solutions are obtained on several cases of a real ship planning problem.  相似文献   

16.
Vehicle routing problem with time windows (VRPTW) involves the routing of a set of vehicles with limited capacity from a central depot to a set of geographically dispersed customers with known demands and predefined time windows. The problem is solved by optimizing routes for the vehicles so as to meet all given constraints as well as to minimize the objectives of traveling distance and number of vehicles. This paper proposes a hybrid multiobjective evolutionary algorithm (HMOEA) that incorporates various heuristics for local exploitation in the evolutionary search and the concept of Pareto's optimality for solving multiobjective optimization in VRPTW. The proposed HMOEA is featured with specialized genetic operators and variable-length chromosome representation to accommodate the sequence-oriented optimization in VRPTW. Unlike existing VRPTW approaches that often aggregate multiple criteria and constraints into a compromise function, the proposed HMOEA optimizes all routing constraints and objectives simultaneously, which improves the routing solutions in many aspects, such as lower routing cost, wider scattering area and better convergence trace. The HMOEA is applied to solve the benchmark Solomon's 56 VRPTW 100-customer instances, which yields 20 routing solutions better than or competitive as compared to the best solutions published in literature.  相似文献   

17.
The sectoring arc routing problem (SARP) is introduced to model activities associated with the streets of large urban areas, like municipal waste collection. The aim is to partition the street network into a given number of sectors and to build a set of vehicle trips in each sector, to minimize the total duration of the trips. Two two-phase heuristics and one best insertion method are proposed. In the two-phase methods, phase 1 constructs the sectors using two possible heuristics, while phase 2 solves a mixed capacitated arc routing problem (MCARP) to compute the trips in each sector. The best insertion method determines sectors and trips simultaneously. In addition to solution cost, some evaluation criteria such as imbalance, diameter and dispersion measures are used to compare algorithms. Numerical results on large instances with up to 401 nodes and 1056 links (arcs or edges) are reported and analysed.  相似文献   

18.
In many rural counties pupils on their way to school are a large, if not the largest group of customers for public mass transit. Hence an effective optimization of public mass transit in these regions must include the traffic caused by pupils. Besides a change in the schedules of the buses and the starting times of the trips, the school starting time may become an integral part of the planning process. We discuss the legal framework for this optimization problem in German states and counties and present a multi-objective mixed-integer linear programming formulation for the simultaneous specification of school and trip starting times. For its solution, we develop a two-stage decomposition heuristic and apply it to practical data sets from three different rural German counties.  相似文献   

19.
This paper integrates production and outbound distribution scheduling in order to minimize total tardiness. The overall problem consists of two subproblems. The first addresses scheduling a set of jobs on parallel machines with machine-dependent ready times. The second focusses on the delivery of completed jobs with a fleet of vehicles which may differ in their loading capacities and ready times. Job-dependent processing times, delivery time windows, service times, and destinations are taken into account. A genetic algorithm approach is introduced to solve the integrated problem as a whole. Two main questions are examined. Are the results of integrating machine scheduling and vehicle routing significantly better than those of classic decomposition approaches which break down the overall problem, solve the two subproblems successively, and merge the subsolutions to form a solution to the overall problem? And if so, is it possible to capitalize on these potentials despite the complexity of the integrated problem? Both questions are tackled by means of a numerical study. The genetic algorithm outperforms the classic decomposition approaches in case of small-size instances and is able to generate relatively good solutions for instances with up to 50 jobs, 5 machines, and 10 vehicles.  相似文献   

20.
The classical column generation approach often shows a very slow convergence. Many different acceleration techniques have been proposed recently to improve the convergence. Here, we briefly survey these methods and propose a novel algorithm based on the Chebyshev center of the dual polyhedron. The Chebyshev center can be obtained by solving a linear program; consequently, the proposed method can be applied with small modifications on the classical column generation procedure. We also show that the performance of our algorithm can be enhanced by introducing proximity parameters which enable the position of the Chebyshev center to be adjusted. Numerical experiments are conducted on the binpacking, vehicle routing problem with time windows, and the generalized assignment problem. The computational results of these experiments demonstrate the effectiveness of our proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号