首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysosomes have an important role in radiation injury of cells and tissues. Activation of autophagy is frequently observed in different types of pathological tissue degeneration. In radiation response it increases in some cases, and lysosomes are responsible for regulated degradation of the autophagic vacuoles. Lysosomes are also involved in ionizing radiation induced cell death. In apoptosis lysosomes degrade content of the phagocytotic vacuoles derived from engulfed apoptotic blebs. On the other hand lysosomal enzymes discharged from disintegrated cells have a key role in induction of necrotic changes. In this work we investigate autophagy and lysosomal protein degradation in the relatively radiation insensitive exocrine pancreatic acini in vivo and in vitro. Type of cell death induced by X-ray was also examined in relation to the changes of the lysosomal processes. In 5h after 16 Gy in vivo whole body irradiation we observed significant increase in the cytoplasmic volume fraction of autophagic vacuoles and in the number of apoptotic cells in vivo. But in the acini isolated from irradiated rats we could not detect a change in the lysosomal degradation of intracellular proteins. Therefore irradiation probably influences the autophagy in an earlier step than lysosomal degradation. Extended necrotic lesions were not observed in vivo as long as 48 h. Isolated pancreatic acini usually contain more autophagic vacuoles than in vivo, but we could not observe additional increase in autophagy after 8 Gy, in vitro irradiation. Lysosomal degradation of intracellular proteins was also unaltered after 8 Gy, in vitro irradiation. Other biochemical functional parameters of the isolated pancreatic acini, like protein synthesis and amylase secretion were not changed either after 8 Gy, in vitro X-ray treatment. These results indicate that pancreatic acinar cells in vitro have a high tolerance to irradiation. The observed in vivo radiation induced changes of the exocrine pancreas are possibly indirectly induced by injuries of more sensitive mechanisms.  相似文献   

2.
Fertilization is the starting point for creating new progeny. At this time, the highly differentiated oocyte and sperm fuse to form one zygote, which is then converted into a pluripotent early embryo. Recent studies have shown that the lysosomal degradation system via autophagy and endocytosis plays important roles in the remodeling of intracellular components during oocyte-to-embryo transition. For example, in Caenorhabditis elegans, zygotes show high endocytic activity, and some populations of maternal membrane proteins are selectively internalized and delivered to lysosomes for degradation. Furthermore, fertilization triggers selective autophagy of sperm-derived paternal mitochondria, which establishes maternal inheritance of mitochondrial DNA. In addition, it has been shown that autophagy via liquid–liquid phase separation results in the selective degradation of some germ granule components, which are distributed to somatic cells of early embryos. This review outlines the physiological functions of the lysosomal degradation system and its molecular mechanisms in C. elegans and mouse embryos.  相似文献   

3.
This Letter combines a novel experimental approach to the study of intracellular processes with a newly developed technique for multimode time-series analysis. Experiments are performed on isolated pond snail (Lymnaea stagnalis) neurons. Local variations in the cellular refractive index as detected by laser interference microscopy are related to the processes in the cell. A wavelet analysis shows the presence of several identifiable modes in the membrane and intracellular dynamics, and a double-wavelet analysis reveals nonlinear interactions between the regulatory processes in the form of mutual frequency and amplitude modulations.  相似文献   

4.
Autophagy is in principle a non-selective degradation system within cells, which is conserved in all eukaryotic cells. Autophagy is usually suppressed at low levels but can be upregulated during periods of nutrient starvation, which facilitates cell survival. In addition to this fundamental role, basal autophagy was recently revealed to be important for constitutive turnover of intracellular proteins and organelles. Autophagy has been considered to be involved also in presentation of endogenous antigens, degradation of invasive bacteria, tumor suppression, cell death and development. This review will discuss the biological significance of autophagy, particularly focusing on its implications in protein metabolism in mammals.  相似文献   

5.

Background

Autophagy, an intracellular response to stress, is characterized by double membrane cytosolic vesicles called autophagosomes. Prolonged autophagy is known to result in autophagic (Type II) cell death. This study examined the potential role of an autophagic response in cultured cerebellar granule neurons challenged with excitotoxin N-methyl-D-aspartate (NMDA).

Results

NMDA exposure induced light chain-3 (LC-3)-immunopositive and monodansylcadaverine (MDC) fluorescent dye-labeled autophagosome formation in both cell bodies and neurites as early as 3 hours post-treatment. Elevated levels of Beclin-1 and the autophagosome-targeting LC3-II were also observed following NMDA exposure. Prolonged exposure of the cultures to NMDA (8-24 h) generated MDC-, LC3-positive autophagosomal bodies, concomitant with the neurodegenerative phase of NMDA challenge. Lysosomal inhibition studies also suggest that NMDA-treatment diverted the autophagosome-associated LC3-II from the normal lysosomal degradation pathway. Autophagy inhibitor 3-methyladenine significantly reduced NMDA-induced LC3-II/LC3-I ratio increase, accumulation of autophagosomes, and suppressed NMDA-mediated neuronal death. ATG7 siRNA studies also showed neuroprotective effects following NMDA treatment.

Conclusions

Collectively, this study shows that autophagy machinery is robustly induced in cultured neurons subjected to prolonged exposure to excitotoxin, while autophagosome clearance by lysosomal pathway might be impaired. Our data further show that prolonged autophagy contributes to cell death in NMDA-mediated excitotoxicity.  相似文献   

6.
Calcium oxalate (CaOx) stone is the most common type of kidney stone, with a formation process comprising supersaturation, nucleation, growth, aggregation to crystals, and adhesion on renal tubular epithelial cells. CaOx stones generally lead to renal injury; however, the underlying mechanism remains poorly understood. Accumulating evidence suggests that nanosized materials could induce much greater toxicity than bulk materials with the same components. As aggregation to nanocrystals is necessary to form CaOx stones and nanocrystals have been widely reported to elicit either prodeath or prosurvival autophagy, the aim is to address the precise role of autophagy in CaOx‐ nanocrystal‐induced cytotoxicity. Clinical CaOx stones from patients are collected followed by ball milling. As a result, CaOx nanocrystals significantly reduce renal cell viability in a dose‐ and time‐dependent manner. Further study shows that CaOx nanocrystals possess an autophagy‐inducing capacity and autophagic flux is complete. Autophagy abrogation by specific chemical inhibitor wortmannin or chloroquine obviously attenuates cytotoxicity, strongly suggesting that prodeath autophagy contributes to CaOx nanocrystals‐elicited cytotoxicity. Finally, it is revealed that autophagy is an essential signaling pathway participating in apoptosis regulation. Collectively, the findings demonstrate the role of autophagy in CaOx‐nanocrystal‐elicited cytotoxicity, and harnessing autophagy can be helpful to design promising strategies for attenuating kidney injury in nephrolithiasis.  相似文献   

7.
Both forced and spontaneous motions of magnetic microbeads engulfed by Dictyostelium cells have served as experimental probes of intracellular dynamics. The complex shear modulus G*(omega), determined from active oscillatory measurements, has a power-law dynamics and increases with the probe size, reflecting intracellular structural complexity. The combined use of passive microrheology allows one to derive the power spectrum of active forces acting on intracellular phagosomes and to test the validity of the fluctuation-dissipation theorem inside living cells.  相似文献   

8.
Intracellular Ca2+ activity regulates a wide range of cellular biochemical processes; in muscle cells, it links membrane excitation to contraction. Ca2+ dynamics includes both synchronous oscillations, and nonlinear wave phenomena, both arising from the superposition of spatially localised stochastic events, such as Ca2+ sparks. We incorporated individualised cell geometry reconstructed from confocal microscopy with realistic spatial distribution of RyR clusters into the three dimensional ventricular cell model, and reproduced complex spatio-temporal intracellular wave patterns from Ca2+ sparks. We also introduced a detailed nuclear Ca2+ handing model to simulate prolonged nuclear Ca2+ transient, and study the effects of cytosolic-nuclear coupling on intracellular Ca2+ dynamics. The model provides a computational platform to study intracellular Ca2+ with the ability to interact with experimental measurements of subcellular structures, and can be modified for other cell types.  相似文献   

9.
In many cell types, intracellular calcium is released from internal stores through calcium release channels which are distributed in clusters with a few tens of channels. Localized calcium release events, i.e. Ca2 + puffs, are subjected to stochastic channel dynamics and fluctuations of environmental calcium. Driven by the internal channel noise or external calcium noise, the localized calcium puffs show a coherence resonance phenomenon at weak stimulus. Our study indicates that coherent calcium puffs with an enhanced periodicity can be achieved with external calcium noise more easily than with internal channel noise.  相似文献   

10.
We present a novel approach to the dynamics of reactions of diffusing chemical species with species fixed in space, e.g., by binding to a membrane. The nondiffusing reaction partners are clustered in areas with a diameter smaller than the diffusion length of the diffusing partner. The activated fraction of the fixed species determines the size of an active subregion of the cluster. Linear stability analysis reveals that diffusion is one of the major determinants of the stability of the dynamics. We illustrate the model concept with Ca2+ dynamics in living cells, which has release channels as fixed reaction partners. Our results suggest that spatial and temporal structures in intracellular Ca2+ dynamics are caused by fluctuations due to the small number of channels per cluster.  相似文献   

11.
The biological function of noise-induced symmetry breaking (NISB) is still unclear even though it may potentially occur in noisy intracellular systems. In this work, I demonstrate that information decoding from a noisy signal is a potential biological function of NISB by revealing that NISB naturally emerges from an optimal information-decoding dynamics and that several intracellular networks can be identified with the information-decoding dynamics. I also propose a mean first passage time profile as a way to experimentally identify NISB.  相似文献   

12.
In many cell types, intracellular calcium is released from internal stores through calcium release channels. Because these channels are distributed in clusters with a few tens of channels, the clusters show a strongly stochastic open and close dynamics, resulting in noisy localized Ca2+ signals called puffs. Using the Li-Rinzel model we compare the stochastic channel simulations for the Markov method and three different Langevin approaches. We suggest that a modified Langevin approach should be considered in order to more accurately simulate Markov channel noise for puff dynamics.  相似文献   

13.
The dispersion relation is the dependence of the velocity of periodic planar wave trains on their wavelength. We study the occurrence of a velocity gap in the dispersion relation in a bistable three component reaction-diffusion system modeling intracellular Ca2+ dynamics. In two spatial dimensions, localized pinned spirals are observed, if their wavelength falls into the dispersion gap. Destruction of free spirals occurs already for conditions where the asymptotic planar wave train exists and the dispersion gap is absent.  相似文献   

14.
超声联合微泡介导的细胞内药物递送是通过微泡的声空化与细胞的相互作用而实现的.作为一种非侵入式的、非病毒的、具有靶向性的、可在成像技术引导下的药物递送技术,超声联合微泡在临床应用上具有独特的优势.该文围绕超声联合微泡实现药物递送的发生机理,从微泡的声学动态响应、细胞响应、细胞外物质进入细胞的动态过程及临床试验进展4方面对...  相似文献   

15.
With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confidence intervals. We demonstrate that quasi-elastic neutron scattering is a suitable experimental technique to characterize the dynamics of intracellular water in the angstrom/picosecond space/time scale and to investigate the effect of water dynamics on cellular biodiversity.  相似文献   

16.
Choi Y  Yang TD  Lee KJ  Choi W 《Optics letters》2011,36(13):2465-2467
We developed an off-axis quantitative phase microscopy that works for a light source with an extremely short spatial coherence length in order to reduce the diffraction noise and enhance the spatial resolution. A dynamic speckle wave whose coherence length is 440 nm was used as an illumination source. To implement an off-axis interferometry for a source of low spatial coherence, a diffraction grating was inserted in the reference beam path. In doing so, an oblique illumination was generated without rotation of the wavefront, which leads to a full-field and single-shot phase recording with improved phase sensitivity of more than a factor of 10 in comparison with coherent illumination. The spatial resolution, both laterally and axially, and the depth selectivity are significantly enhanced due to the wide angular spectrum of the speckle wave. We applied our method to image the dynamics of small intracellular particles in live biological cells. With enhanced phase sensitivity and speed, the proposed method will serve as a useful tool to study the dynamics of biological specimens.  相似文献   

17.
Reactions in the intracellular medium occur in a highly organized and heterogenous environment rendering invalid modeling approaches based on the law of mass action or its stochastic counter-part. This has led to the recent development of a variety of stochastic microscopic approaches based on lattice-gas automata or Brownian dynamics. The main disadvantage of these methods is that they are computationally intensive. We propose a mesoscopic method which permits the efficient simulation of reactions occurring in the complex geometries typical of intracellular environments. This approach is used to model the transport of a substrate through a pore in a semi-permeable membrane, in which its Michaelis–Menten enzyme is embedded. We find that the temporal evolution of the substrate is a sensitive function of the spatial heterogeneity of the environment. The spatial organization and heterogeneities of the intracellular medium seem to be playing an important role in the regulation of biochemical reactions.  相似文献   

18.
We describe the promising development of third-harmonic generation (THG) in laser scanning microscopy for study of the functional imaging of live biological cells. The dynamics of Ca(2+) in biological cells is shown. The Ca(2+) signal consists of a transient increase in the intracellular concentration. THG microscopy allows one to temporally visualize the release of Ca(2+) from internal stores and (or) calcium influx.  相似文献   

19.
20.
A theoretical approach to the glucose–insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose–insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号