首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solving a stochastic optimization problem often involves performing repeated noisy function evaluations at points encountered during the algorithm. Recently, a continuous optimization framework for executing a single observation per search point was shown to exhibit a martingale property so that associated estimation errors are guaranteed to converge to zero. We generalize this martingale single observation approach to problems with mixed discrete–continuous variables. We establish mild regularity conditions for this class of algorithms to converge to a global optimum.  相似文献   

2.
This paper introduces a new derivative-free class of mesh adaptive direct search (MADS) algorithms for solving constrained mixed variable optimization problems, in which the variables may be continuous or categorical. This new class of algorithms, called mixed variable MADS (MV-MADS), generalizes both mixed variable pattern search (MVPS) algorithms for linearly constrained mixed variable problems and MADS algorithms for general constrained problems with only continuous variables. The convergence analysis, which makes use of the Clarke nonsmooth calculus, similarly generalizes the existing theory for both MVPS and MADS algorithms, and reasonable conditions are established for ensuring convergence of a subsequence of iterates to a suitably defined stationary point in the nonsmooth and mixed variable sense.  相似文献   

3.
In this paper, we consider the application of order statistics to establish the optimality in stochastic and heuristic optimization algorithms. A method for estimating the minimum value with an associated confidence interval is developed using the formalism of the theory of order statistics for i.i.d. variables; we examine it by computer simulation. We build a method for the estimation of confidence intervals of the minimum value using order statistics, implemented for optimality testing and stopping in Markov type random search algorithms. The efficiency of this approach is discussed, using the results of application to stochastic approximation and simulated annealing.  相似文献   

4.
Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2007). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. In this paper, we describe several improvements that speed up the original C-GRASP and make it more robust. We compare the new C-GRASP with the original version as well as with other algorithms from the recent literature on a set of benchmark multimodal test functions whose global minima are known. Hart’s sequential stopping rule (1998) is implemented and C-GRASP is shown to converge on all test problems.  相似文献   

5.
A niche hybrid genetic algorithm (NHGA) is proposed in this paper to solve continuous multimodal optimization problems more efficiently, accurately and reliably. It provides a new architecture of hybrid algorithms, which organically merges the niche techniques and Nelder–Mead's simplex method into GAs. In the new architecture, the simplex search is first performed in the potential niches, which likely contain a global optimum, to locate the promising zones within search space, quickly and reliably. Then another simplex search is used to quickly discover the global optimum in the located promising zones. The proposed method not only makes the exploration capabilities of GAs stronger through niche techniques, but also has more powerful exploitation capabilities by using simplex search. So it effectively alleviates premature convergence and improves weak exploitation capacities of GAs. A set of benchmark functions is used to demonstrate the validity of NHGA and the role of every component of NHGA. Numerical experiments show that the NHGA may, efficiently and reliably, obtain a more accurate global optimum for the complex and high-dimension multimodal optimization problems. It also demonstrates that the new hybrid architecture is potential and can be used to generate more potential hybrid algorithms.  相似文献   

6.
Tabu search (TS) is a metaheuristic, which proved efficient to solve various combinatorial optimization problems. However, few works deal with its application to the global minimization of functions depending on continuous variables. To perform this task, we propose an hybrid method combining tabu search and simplex search (SS). TS allows to cover widely the solution space, to stimulate the search towards solutions far from the current solution, and to avoid the risk of trapping into a local minimum. SS is used to accelerate the convergence towards a minimum. The Nelder–Mead simplex algorithm is a classical very powerful local descent algorithm, making no use of the objective function derivatives. A “simplex” is a geometrical figure consisting, in n-dimensions, of (n+1) points. If any point of a simplex is taken as the origin, the n other points define vector directions that span the n-dimension vector space. Through a sequence of elementary geometric transformations (reflection, contraction and extension), the initial simplex moves, expands or contracts. To select the appropriate transformation, the method only uses the values of the function to be optimized at the vertices of the simplex considered. After each transformation, the current worst vertex is replaced by a better one. Our algorithm called continuous tabu simplex search (CTSS) implemented in two different forms (CTSSsingle, CTSSmultiple) is made up of two steps: first, an adaptation of TS to continuous optimization problems, allowing to localize a “promising area”; then, intensification within this promising area, involving SS. The efficiency of CTSS is extensively tested by using analytical test functions of which global and local minima are known. A comparison is proposed with several variants of tabu search, genetic algorithms and simulated annealing. CTSS is applied to the design of a eddy current sensor aimed at non-destructive control.  相似文献   

7.
This paper proposes a new method that extends the efficient global optimization to address stochastic black-box systems. The method is based on a kriging meta-model that provides a global prediction of the objective values and a measure of prediction uncertainty at every point. The criterion for the infill sample selection is an augmented expected improvement function with desirable properties for stochastic responses. The method is empirically compared with the revised simplex search, the simultaneous perturbation stochastic approximation, and the DIRECT methods using six test problems from the literature. An application case study on an inventory system is also documented. The results suggest that the proposed method has excellent consistency and efficiency in finding global optimal solutions, and is particularly useful for expensive systems.  相似文献   

8.
Genetic algorithms are stochastic search approaches based on randomized operators, such as selection, crossover and mutation, inspired by the natural reproduction and evolution of the living creatures. However, few published works deal with their application to the global optimization of functions depending on continuous variables.A new algorithm called Continuous Genetic Algorithm (CGA) is proposed for the global optimization of multiminima functions. In order to cover a wide domain of possible solutions, our algorithm first takes care over the choice of the initial population. Then it locates the most promising area of the solution space, and continues the search through an intensification inside this area. The selection, the crossover and the mutation are performed by using the decimal code. The efficiency of CGA is tested in detail through a set of benchmark multimodal functions, of which global and local minima are known. CGA is compared to Tabu Search and Simulated Annealing, as alternative algorithms.  相似文献   

9.
Multiagent systems have been studied and widely used in the field of artificial intelligence and computer science to catalyze computation intelligence. In this paper, a multiagent evolutionary algorithm called RAER based on the ERA multiagent modeling pattern is proposed, where ERA has the same architecture as Swarm including three parts of Environment, Reactive rules and Agents. RAER integrates a novel roulette inversion operator (RIO) proposed in this paper and theoretically proved to conquer the irrationality of the inversion operator (IO) designed by John Holland when used for real code stochastic optimization algorithms. Experiments for numerical optimization of 4 benchmark functions show that the RIO operator bears better functioning than IO operator. And experiments for numerical optimization of 12 benchmark functions are used to examine the performance and scalability of RAER along the problem dimensions ranging 20-10 000, results indicate that RAER outperforms other comparative algorithms significantly. Also, two engineering optimization problems of a stable linear system approximation and a welded beam design are used to examine the applicability of RAER. Results show that RAER has better search ability and faster convergence speed. Especially for the approximation problem, REAR can find the proper optima belonging to different fixed search areas, which is significantly better than other algorithms and shows that RAER can search the problem domains more thoroughly than other algorithms. Hence, RAER is efficient and practical.  相似文献   

10.
In this paper, we combine two types of local search algorithms for global optimization of continuous functions. In the literature, most of the hybrid algorithms are produced by combination of a global optimization algorithm with a local search algorithm and the local search is used to improve the solution quality, not to explore the search space to find independently the global optimum. The focus of this research is on some simple and efficient hybrid algorithms by combining the Nelder–Mead simplex (NM) variants and the bidirectional random optimization (BRO) methods for optimization of continuous functions. The NM explores the whole search space to find some promising areas and then the BRO local search is entered to exploit optimal solution as accurately as possible. Also a new strategy for shrinkage stage borrowed from differential evolution (DE) is incorporated in the NM variants. To examine the efficiency of proposed algorithms, those are evaluated by 25 benchmark functions designed for the special session on real-parameter optimization of CEC2005. A comparison study between the hybrid algorithms and some DE algorithms and non-parametric analysis of obtained results demonstrate that the proposed algorithms outperform most of other algorithms and their difference in most cases is statistically considerable. In a later part of the comparative experiments, a comparison of the proposed algorithms with some other evolutionary algorithms reported in the CEC2005 confirms a better performance of our proposed algorithms.  相似文献   

11.
We describe global optimization problems from three different fields representing many-body potentials in physical chemistry, optimal control of a chemical reactor, and fitting a statistical model to empirical data. Historical background for each of the problems as well as the practical significance of the first two are given. The problems are solved by using eight recently developed stochastic global optimization algorithms representing controlled random search (4 algorithms), simulated annealing (2 algorithms), and clustering (2 algorithms). The results are discussed, and the importance of global optimization in each respective field is focused.  相似文献   

12.
We survey a new approach that the author and his co-workers have developed to formulate stochastic control problems (predominantly queueing systems) asmathematical programming problems. The central idea is to characterize the region of achievable performance in a stochastic control problem, i.e., find linear or nonlinear constraints on the performance vectors that all policies satisfy. We present linear and nonlinear relaxations of the performance space for the following problems: Indexable systems (multiclass single station queues and multiarmed bandit problems), restless bandit problems, polling systems, multiclass queueing and loss networks. These relaxations lead to bounds on the performance of an optimal policy. Using information from the relaxations we construct heuristic nearly optimal policies. The theme in the paper is the thesis that better formulations lead to deeper understanding and better solution methods. Overall the proposed approach for stochastic control problems parallels efforts of the mathematical programming community in the last twenty years to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relaxations) and leads to new insights ranging from a complete characterization and new algorithms for indexable systems to tight lower bounds and nearly optimal algorithms for restless bandit problems, polling systems, multiclass queueing and loss networks.  相似文献   

13.
Complex natural systems may present interaction dynamics among random variables whose stochastic laws are in part or completely unknown. Statistical inference techniques applied to study such complex systems often require building suitable models that approximately describe the latent stochastic dynamics. When the observability of the variables of interest is limited by the convolution of such dynamics and noise, deconvolution techniques are needed either to estimate statistical characteristics or to decompose mixed signals. A good application field is offered by speculative financial market and their volatility stochastic dynamics. Typically, return generating stochastic processes show nonlinear, multiscale and non-stationary dynamics, especially when observed at very high frequencies. We explore the performance of computational techniques that combine the nonlinear approximation power of wavelets and associated structures with the ability of greedy learning algorithms to recover latent volatility structure by iteratively reducing the signal search space dimensionality across the most informative scales.  相似文献   

14.
Combinatorial optimization problems have applications in a variety of sciences and engineering. In the presence of data uncertainty, these problems lead to stochastic combinatorial optimization problems which result in very large scale combinatorial optimization problems. In this paper, we report on the solution of some of the largest stochastic combinatorial optimization problems consisting of over a million binary variables. While the methodology is quite general, the specific application with which we conduct our experiments arises in stochastic server location problems. The main observation is that stochastic combinatorial optimization problems are comprised of loosely coupled subsystems. By taking advantage of the loosely coupled structure, we show that decomposition-coordination methods provide highly effective algorithms, and surpass the scalability of even the most efficiently implemented backtracking search algorithms.  相似文献   

15.
We suggested some modifications to the controlled random search (CRS) algorithm for global optimization. We introduce new trial point generation schemes in CRS, in particular, point generation schemes using linear interpolation and mutation. Central to our modifications is the probabilistic adaptation of point generation schemes within the CRS algorithm.A numerical study is carried out using a set of 50 test problems many of which are inspired by practical applications. Numerical experiments indicate that the resulting algorithms are considerably better than the previous versions. Thus, they offer a reasonable alternative to many currently available stochastic algorithms, especially for problems requiring direct search type methods.  相似文献   

16.
We investigate algorithms, applications, and complexity issues for the single-source uncapacitated (SSU) version of the minimum concave-cost network flow problem (MCNFP). We present applications arising from production planning, and prove complexity results for both global and local search. We formally state the local search algorithm of Gallo and Sodini [5], and present alternative local search algorithms. Computational results are provided to compare the various local search algorithms proposed and the effects of initial solution techniques.  相似文献   

17.
Expensive optimization aims to find the global minimum of a given function within a very limited number of function evaluations. It has drawn much attention in recent years. The present expensive optimization algorithms focus their attention on metamodeling techniques, and call existing global optimization algorithms as subroutines. So it is difficult for them to keep a good balance between model approximation and global search due to their two-part property. To overcome this difficulty, we try to embed a metamodel mechanism into an efficient evolutionary algorithm, low dimensional simplex evolution (LDSE), in this paper. The proposed algorithm is referred to as the low dimensional simplex evolution extension (LDSEE). It is inherently parallel and self-contained. This renders it very easy to use. Numerical results show that our proposed algorithm is a competitive alternative for expensive optimization problems.  相似文献   

18.
In this work we investigate the convergence of stochastic search algorithms toward the Pareto set of continuous multi-objective optimization problems. The focus is on obtaining a finite approximation that should capture the entire solution set in a suitable sense, which will be defined using the concept of ε-dominance. Under mild assumptions about the process to generate new candidate solutions, the limit approximation set will be determined entirely by the archiving strategy. We propose and analyse two different archiving strategies which lead to a different limit behavior of the algorithms, yielding bounds on the obtained approximation quality as well as on the cardinality of the resulting Pareto set approximation.   相似文献   

19.
This paper presents some simple technical conditions that guarantee the convergence of a general class of adaptive stochastic global optimization algorithms. By imposing some conditions on the probability distributions that generate the iterates, these stochastic algorithms can be shown to converge to the global optimum in a probabilistic sense. These results also apply to global optimization algorithms that combine local and global stochastic search strategies and also those algorithms that combine deterministic and stochastic search strategies. This makes the results applicable to a wide range of global optimization algorithms that are useful in practice. Moreover, this paper provides convergence conditions involving the conditional densities of the random vector iterates that are easy to verify in practice. It also provides some convergence conditions in the special case when the iterates are generated by elliptical distributions such as the multivariate Normal and Cauchy distributions. These results are then used to prove the convergence of some practical stochastic global optimization algorithms, including an evolutionary programming algorithm. In addition, this paper introduces the notion of a stochastic algorithm being probabilistically dense in the domain of the function and shows that, under simple assumptions, this is equivalent to seeing any point in the domain with probability 1. This, in turn, is equivalent to almost sure convergence to the global minimum. Finally, some simple results on convergence rates are also proved.  相似文献   

20.
A derivative-free simulated annealing driven multi-start algorithm for continuous global optimization is presented. We first propose a trial point generation scheme in continuous simulated annealing which eliminates the need for the gradient-based trial point generation. We then suitably embed the multi-start procedure within the simulated annealing algorithm. We modify the derivative-free pattern search method and use it as the local search in the multi-start procedure. We study the convergence properties of the algorithm and test its performance on a set of 50 problems. Numerical results are presented which show the robustness of the algorithm. Numerical comparisons with a gradient-based simulated annealing algorithm and three population-based global optimization algorithms show that the new algorithm could offer a reasonable alternative to many currently available global optimization algorithms, specially for problems requiring ‘direct search’ type algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号