首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The intermolecular vibrational energy transfer from triplet molecules of benzophenone and anthraquinone to H2O molecules has been investigated. To determine the rates of establishment of vibrational (V-V) and thermal (V-T) equilibrium in a vibrational quasi-continuum of mixed singlet-triplet levels, the dependences of the decay rates and intensities of the fast and slow components of delayed fluorescence on the H2O vapor pressure have been investigated. For V-V relaxation, the efficiencies 1 and the mean energies E transferred per collision in mixtures with H2O and other polyatomic foreign gases have been compared. It has been established that the efficiencies 1 for quasi-resonant vibrational energy transfer (V-V) from benzophenone and anthraquinone to H2O are an order of magnitude lower than the gas-kinetic ones and lower than those obtained under the same experimental conditions for such foreign gases as C5H12, SF6, and CCl4, and decrease with increasing temperature in the 433–513 K range. It has been concluded that the mechanism of V-V relaxation in mixtures with H2O are determined by long-range attractive forces. In mixtures with H2O, no acceleration of V-T relaxation due to the formation of hydrogen bonds has been revealed. The low-efficiency thermalization process (V-T relaxation) is controlled by short-range repulsive forces, and the differences between the intensities 2 for mixtures of benzophenone and anthraquinone with H2O and other polyatomic gases are determined by the change in the reduced mass of interacting molecules.  相似文献   

2.
The influence of temperature on the rate constants of photoinduced intermolecular electron transfer, representing the first stage of photoinduced reactions, has been investigated based on analysis of the quenching of fluorescence of carbazole vapor by halomethanes (CHCl3, CH2Br2, CCl4, CHBr3) and delayed fluorescence of benzophenone and anthraquinone vapors by aliphatic amines (diethylamine, dibutylamine, cyclohexylamine, triethylamine) and pyridine. It has been established that the rate constants of photoinduced electron transfer in different donor-acceptor pairs in the gas phase can increase or decrease with increase in the temperature from 433 to 623 K. The energies of activation and enthalpy of the fluorescence-quenching process have been determined. The interrelation between the rate constants of fluorescence quenching k q and the free energy of electron transfer G ET has been analyzed with account for the mean vibrational energy <E vib> of the interacting molecules. It is shown that positive and negative temperature dependences k q(T) are characteristic, respectively, of the regions of normal (k ET increases with decrease in G ET) and inverted (k ET decreases with decrease in G ET) changes in the rate constants caused by an increase in the exothermicity of the photoinduced electron transfer process.  相似文献   

3.
By the delayed fluorescence activated by direct multiphoton excitation of triplet molecules by CO2–laser radiation we have studied the prevailing deactivation pathways of triplet molecules with a high store of vibrational energy E vib. The dependences of the kinetic characteristics of delayed fluorescence on the presence of vapors and foreign gases have been used to estimate the rates and efficiencies of intermolecular vibrational relaxation in the vibrational quasi–continuum of the triplet state T 1. By the changes in the intensities and decay rates over a wide range of vibrational energies we have established the E vib dependences of reversible intercombination conversion between the states T 1 and S 1 and interconversion from T 1 to the ground electronic state S 0 for both the case of isolated excited molecules and at a steady vibrational temperature. It is shown that at high vibrational temperatures the radiationless transition from the T 1 state to S 0 has an activation character and is accomplished through the energy barrier. The conditions for going to an exponential dependence have been determined. It has been found that the obtained dependences are in good agreement with the known experimental results. The influence of molecular and environmental characteristics on the decay rate of triplet molecules is compared.  相似文献   

4.
By the spectral and kinetic characteristics of the luminescence of vapors of polyatomic molecules (anthracene, anthraquinone, fluorenone) initiated by selective IR multiphoton excitation (IR MPE) of molecules in the ground electronic state S 0 the relaxation processes proceeding under vibrational excitation of molecules to energies exceeding the energies of the lower excited electronic states have been investigated. The changes in the spectral and kinetic characteristics with increasing CO2 laser energy density and vapor P v and foreign gas pressure P FG are analyzed. They are similar to the characteristics obtained for normal fluorescence of these molecules with changing vibrational energy E vib content. On the basis of experimental data and model calculations it has been concluded that at the laser radiation densities used in the case of IR MPE the molecules reach energies considerably exceeding the energies of the electronic levels. It is shown that a nonadiabatic connection between the electronic states leads to the population of mixed electronic states isoenergetic to the vibrational levels of the ground electronic state and to emission of delayed luminescence spectrally identical to the normal luminescence of these molecules. It has been found that when high vibrational levels are populated, new relaxation channels, such as reverse electron relaxation, emission from high vibrational levels of the ground electronic state, and multiquantum vibrational energy transfer at collisions leading to a rapid establishment of vibrational equilibrium become important.  相似文献   

5.
By the pressure dependences of the decay rates of delayed fluorescence activated by vibrational excitation of triplet molecules of benzophenone and anthraquinone, the efficiencies of collisional transfer of vibrational energy (V–V-transfer) in the vibrational quasi-continuum of the triplet state have been estimated. It is shown that the efficiencies of the process in mixtures with foreign gases increase with increasing dipole moment and polarizability of colliding molecules. In the temperature range 433–513 K, we obtained an inverse temperature dependence of the V–V-transfer efficiency, which is satisfactorily described by empirical relations taking into account long-range attractive forces. The results obtained point to the determining role of long-range attractive forces in quasi-resonance V–V-transfer of vibrational energy by molecules excited in vibrational quasi-continuum.  相似文献   

6.
Intermolecular photoinduced electron transfer (PET) in a gas phase was studied using carbazole vapor fluorescence quenching by halomethanes (CHCl3, CH2Br2, CCl4, CHBr3). The fluorescence quenching rate constants k q changing from 2.3·105 sec–1·torr–1 in mixtures with CHCl3 to 4.6·106 sec–1·torr–1 in mixtures with CHBr3 at a constant temperature of 403 K were estimated. The dependence of the carbazole fluorescence decay rates in the presence of halomethanes on the free energy change G during transfer of the electron from carbazole to halomethanes is considered. It is suggested to take into account the influence of the vibrational energy of the carbazole molecule E vib and its temperature changes in estimation of the G values. The differences between PET in the gas and liquid phases were analyzed. It is found that for mixtures with CCl4 and CHBr3 the negative temperature dependence of k q is observed, when the decay rates and efficiencies of the intermolecular PET decreased with temperature increase in the range 403–573 K, i.e. these mixtures the electron transfer is not a barrier-restricted process.  相似文献   

7.
A brief review of works on the temperature dependences of the rate constants kq of the intermolecular processes proceeding in the excited electronic states in the gas phase is given. The dependences kq(T) for such biomolecular processes as intermolecular vibrational energy transfer in the triplet state vibrational quasi-continuum, triplet-triplet electron excitation energy transfer, and intermolecular photoinduced electron transfer have been compared. The experimental data have shown that in the gas phase for all analyzed intermolecular processes both an increase and a decrease in kq with increasing temperature (T) is observed, which is not associated with the specific intermolecular interactions leading to the formation of long-lived components. The change in the type of temperature dependence is due to the change in the mechanisms of the radiationless transitions with increasing density of vibrational levels in the final electronic state. The applicability of the known models based on the theory of radiationless transitions for predicting the temperature dependences kq(T) is discussed. __________ Translated from Zhurnal Prikladnoi Spektros-kopii, Vol. 72, No. 4, pp. 429–439, July–August, 2005.  相似文献   

8.
By the methods of luminescence, picosecond spectroscopy, and quantumchemical calculations the mechanisms of electron excitation energy deactivation in some oligothiophenes with intramolecular charge transfer depending on the solvent polarity and viscosity have been investigated. While for 2Npiperidino5(2,2dicyanovinyl)thiophene (PDCVT) the main channel of nonradiative deactivation is the transition to a lower intermediate state with a twisted double bond controlled by the medium viscosity, in the case of (E){2[25piperidino2thienyl]6(trifluoridemethyl)4H4pyranylidene}propanedinitryl (PTFDN) fluorescence quenching is initiated by the solvent polarity. For two other oligothiophenes, 2Npiperidino5cyanothiophene (PCT) and 2Npiperidino5cyanoterthiophene (PCTT), differing in the length of the thiophene chain, we have revealed, along with the effective quenching of fluorescence in shortchain PCT (independent of the solvent polarity and viscosity), an increase in the radiation capacity in PCTT with increasing polarity of the solvent. The possible mechanisms of nonradiative deactivation in the investigated oligothiophenes are discussed.  相似文献   

9.
Non-equilibrium argon-nitrogen mixture plasma generated at 13.56 MHz is characterized by optical emission spectroscopy and Langmuir probe techniques. The excitation and vibrational temperature are studied as a function of argon percentage in the mixture, at 30-Pa filling pressure and input RF powers of 200 and 300 watt, to find out their role in dissociation of N2 molecules. In this work, the excitation temperature is determined from Ar-I emission line intensities by using the simple Boltzmann plot method and is found to increase with argon mixing in nitrogen plasma. In similar fashion, the vibrational temperature of second positive system has been determined and is found to also have increasing trend with argon addition. The effect of excitation and vibrational temperature on the nitrogen molecular dissociation level is also monitored. It is observed that N/N 2 ratio increases with increase in excitation and vibrational temperature and falls slightly at the end.  相似文献   

10.
Time-resolved moderated luminescence of aromatic ketones (benzophenone, aceptophenone) in the presence of neutral and reactive hydrogeneous foreign gases (ethylene, pentane, triethylamine) is investigated. It is shown that the addition of hydrogeneous foreign gases leads to strong quenching of the triplet molecules of aromatic ketones. Effectivenesses of such bimolecular processes as the collision detachment of a hydrogen atom and establishment of vibrational and thermal equilibrium are compared. It is concluded that the vibrational degrees of freedom of the acceptors, the aromatic ketones, are inactive in the photochemical process of collision detachment of a hydrogen atom that takes place after the establishment of vibrational equilibrium. Institute of Molecular and Atomic Physics of the National Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 1, pp. 73–77, January–February, 1999.  相似文献   

11.
Oxygen quenching of excited triplet and singlet states of gas-phase anthracene and its derivatives that have similar energies of the lower triplet levels but widely different oxidation potentials (0.44 < Eox < 1.89 V) was studied. Quenching rate constants for singlet (kSO2) and triplet (kTO2) states in addition to the fraction of oxygen-quenched singlet and triplet states qS 1(T1O2 were determined from the decay rates, fluorescence intensities, and delayed fluorescence as functions of oxygen pressure. It was found that kSO2 values vary from 2·104 (9,10-dicyanoanthracene) to 1.2·107 sec−1·torr−1 (anthracene, 9-methylanthracene, 2-aminoanthracene) and kSO2 values from 5·102 to 1·105 sec−1·torr−1. The kSO2 values for anthracene, 9-methylanthracene, and 2-aminoanthracene, which have fast rates of interconversion from S1 to T1, are close to the rate constants for gas-kinetic collisions and are independent of the oxidation potentials (Eox). The quenching rate constants kSO2 for the other anthracene derivatives and kTO2 for all studied compounds decrease with increasing free energy of electron transfer ΔGET, which indicates the important role of charge-transfer interactions in the oxygen quenching of singlet S1- and triplet T1 states. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 1, pp. 36–42, January–February, 2008.  相似文献   

12.
本文考察不同的侧链长度对聚对苯乙炔 (PPV)衍生物的光学性质等的影响 ,以及PPV/C60 的组合薄膜中的激发传递和电荷转移过程。结果表明随着连接在PPV的侧链长度的增长 ,其π π 跃迁带隙变窄 ,使得吸收和发射峰的位置逐渐红移 ;同时观测到PPV/C60 间存在着极有效的激发传递过程 ,从而使得PPV衍生物的荧光在很大程度上被C60 分子所猝灭 ;MD PPV/C60 组合膜中观测到了C-60 的吸收峰 ,这表明该体系存在着基态电荷转移过程 ,同时也表明PPV衍生物与C60 分子间的相互作用和PPV的侧链长短密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号