首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convenient aptamer-based competitive electrochemical biosensor for a small biomolecule,adenosine,was described. The sensing surface was fabricated by self-assembly of an aptamer/mercaptohexanol monolayer on a gold disk electrode. The principle of this aptasensor is based on the competition between an adenosine target molecule and a ferrocene-conjugated signaling DNA strand for the aptamer binding site on the sensing surface. Due to the competitive nature of this assay,the electrochemical responses of the ...  相似文献   

2.
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.  相似文献   

3.
4.

This review (with 110 refs.) gives an overview on the progress that has been made in the past few years on the use of gold nanoparticles (AuNPs) for use in sensors and analytical tools for the determination of dopamine (DA). Both AuNPs and their composites with other organic and inorganic materials including noble metals are treated. Following an overview on the clinical significance of DA, we discuss the various analytical methods that are (a) electrochemiluminescence (ECL); (b) surface enhanced Raman scattering (SERS); (c) colorimetric probing and visual detection; and (d) the large class of electrochemical sensors. Subsections cover sensors based on plain AuNPs, bimetallic NPs, AuNP-metal@metal oxide nanocomposites, AuNP nanocomposites with organic polymers, AuNP nanocomposites with carbon nanotubes or with graphene, and finally sensors based on ternary materials containing AuNPs. The review ends with a conclusion on current challenges of sensors for DA and an outlook on future trends.

We review the recent progress in sensing dopamine based on AuNPs and its nanocomposites including bimetallic nanoparticles, AuNPs-/metal oxide, AuNPs-polymer, AuNPs-carbon nanotubes, AuNPs-graphene and ternary materials using different types of sensing techniques such as electrochemiluminescence (ECL), colorimetric, surface enhanced Raman scattering (SERS) and electrochemical techniques.

  相似文献   

5.
6.
7.
Electrochemical sensors are widely used to monitor biomolecules. However, limitations in sensor geometry have restricted the scope of currently used electrochemical sensors. 3D-printing has emerged as a promising manufacturing approach, to robustly make electrochemical sensors, that can stably measure in biological environments. This review highlights the recent trends in the development of 3D-printed electrodes and biosensors for measurement of biomolecules. Novel geometries of 3D-printed electrodes have provided the means to conduct ex vivo measurement in the intestinal tract and in vivo measurements in the brain. 3D-printing is providing the ability to manufacture electrochemical sensors that can measure biomolecules in diverse areas of the body.  相似文献   

8.
Chen W  Cai S  Ren QQ  Wen W  Zhao YD 《The Analyst》2012,137(1):49-58
Due to the significance of hydrogen peroxide (H(2)O(2)) in biological systems and its practical applications, the development of efficient electrochemical H(2)O(2) sensors holds a special attraction for researchers. Various materials such as Prussian blue (PB), heme proteins, carbon nanotubes (CNTs) and transition metals have been applied to the construction of H(2)O(2) sensors. In this article, the electrocatalytic H(2)O(2) determinations are mainly focused on because they can provide a superior sensing performance over non-electrocatalytic ones. The synergetic effect between nanotechnology and electrochemical H(2)O(2) determination is also highlighted in various aspects. In addition, some recent progress for in vivo H(2)O(2) measurements is also presented. Finally, the future prospects for more efficient H(2)O(2) sensing are discussed.  相似文献   

9.
This review (with (318) refs) describes progress made in the design and synthesis of morphologically different metal oxide nanoparticles made from iron, manganese, titanium, copper, zinc, zirconium, cobalt, nickel, tungsten, silver, and vanadium. It also covers respective composites and their function and application in the field of electrochemical and photoelectrochemical sensing of chemical and biochemical species. The proper incorporation of chemical functionalities into these nanomaterials warrants effective detection of target molecules including DNA hybridization and sensing of DNA or the formation of antigen/antibody complexes. Significant data are summarized in tables. The review concludes with a discussion or current challenge and future perspectives.
Graphical abstract ?
  相似文献   

10.
Carbon nanotubes (CNTs) have been incorporated in electrochemical sensors to decrease overpotential and improve sensitivity. In this review, we focus on recent literature that describes how CNT-based electrochemical sensors are being developed to detect neurotransmitters, proteins, small molecules such as glucose, and DNA. Different types of electrochemical methods are used in these sensors including direct electrochemical detection with amperometry or voltammetry, indirect detection of an oxidation product using enzyme sensors, and detection of conductivity changes using CNT-field effect transistors (FETs). Future challenges for the field include miniaturizing sensors, developing methods to use only a specific nanotube allotrope, and simplifying manufacturing.  相似文献   

11.
Journal of Solid State Electrochemistry - Only about 3% of Earth’s water is freshwater out of which only 0.4% is accessible as surface water in the form of lakes, rivers and groundwater. When...  相似文献   

12.
Basic theoretical and experimental results of research into natural-convective instability of electrochemical systems are considered.  相似文献   

13.
Rusling JF  Zhou L  Munge B  Yang J  Estavillo C  Schenkman JB 《Faraday discussions》2000,(116):77-87; discussion 171-90
This paper describes several applications of polyion-biomolecule films on electrodes related to future development of in vitro chemical toxicity sensors. In the first example, composite films of DNA and ionomers cast onto pyrolytic graphite (PG) electrodes are shown to be useful for detecting DNA damage during incubation with the carcinogen styrene oxide at pH 5.5. Single electrodes can be used to estimate relative damage rates by derivative square wave voltammetry. Films containing the ionomer Nafion gave better reproducibility than another ionomer, Eastman AQ38. In the second example, films containing redox proteins myoglobin (Mb) and cytochrome (cyt) P450cam were constructed in alternate layers with polyions including DNA on rough PG electrodes. Films with reversible protein FeIII/FeII electrochemistry with up to 7 electroactive layers were made. Amounts of electroactive protein on rough PG that were 7 to 17-fold larger than in similar films on smooth gold were achieved because many more layers were electroactive. Films of Mb/DNA also showed oxidation peaks after short incubations with styrene oxide that may be attributable to DNA damage. Results are relevant to the future design of enzyme-DNA films which convert pollutants and drugs to reactive metabolites, followed by electrochemical detection of the resulting DNA damage.  相似文献   

14.
This review updates the explosive development of gold catalysis for organic transformation focusing on the current literature over last 3 years. Recent investigations have shown that gold catalysis provides catalytically active systems, whereas selectivity and reusability are advantages over noncatalyzed organic transformations. The collected literature is focusing for new organic reactions and synthetic methodologies. Gold can also be suggested for green processes dedicated to fine chemicals, pharmaceuticals, and the food industry due to its recognized biocompatibility. The current review is focused on new methods in the organic synthesis that could be of interest in the wide area of organic chemistry for developing new catalytic pathways.  相似文献   

15.
Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.  相似文献   

16.
This article reviews the progress made in the past 5 years in the field of direct and non-enzymatic electrochemical sensing of glucose. Following a brief discussion of the merits and limitations of enzymatic glucose sensors, we discuss the history of unraveling the mechanism of direct oxidation of glucose and theories of non-enzymatic electrocatalysis. We then review non-enzymatic glucose electrodes based on the use of the metals platinum, gold, nickel, copper, of alloys and bimetals, of carbon materials (including graphene and graphene-based composites), and of metal-metal oxides and layered double hydroxides. This review contains more than 200 refs.
Figure This article reviews the history of unraveling the mechanism of direct electrochemical glucose oxidation and the attempts to successfully develop non-enzymatic electrochemical glucose sensors over the past 5 years.
  相似文献   

17.
18.
A uniform three-dimensional (3D) gold nanoparticle (AuNP)-embedded porous graphene (AuEPG) thin film has been fabricated by electrostatic layer-by-layer assembly of AuNPs and graphene nanosheets functionalized with bovine serum albumin and subsequent thermal annealing in air at 340 °C for 2 h. Scanning electron microscopy (SEM) investigations for the AuEPG film indicate that an AuNP was embedded in every pore of the porous graphene film, something that was difficult to achieve with previously reported methods. The mechanism of formation of the AuEPG film was initially explored. Application of the AuEPG film in electrochemical sensing was further demonstrated by use of H(2)O(2) as a model analyte. The AuEPG film-modified electrode showed improved electrochemical performance in H(2)O(2) detection compared with nonporous graphene-AuNP composite film-modified electrodes, which is mainly attributed to the porous structure of the AuEPG film. This work opens up a new and facile way for direct preparation of metal or metal oxide nanoparticle-embedded porous graphene composite films, which will enable exciting opportunities in highly sensitive electrochemical sensors and other advanced applications based on graphene-metal composites.  相似文献   

19.
Biosensors based on surface plasmon resonance (SPR) have become a central tool for the investigation and quantification of biomolecules and their interactions. Nucleic acids (NAs) play a vital role in numerous biological processes and therefore have been one of the major groups of biomolecules targeted by the SPR biosensors. This paper discusses the advances of NA SPR biosensor technology and reviews its applications both in the research of molecular interactions involving NAs (NA–NA, NA–protein, NA–small molecule), as well as for the field of bioanalytics in the areas of food safety, medical diagnosis and environmental monitoring.  相似文献   

20.
Biologically important analytes such as cysteine and vitamin-C were detected by electron transfer (ET) via naked eye colorimetric sensing using a tailor-made water-soluble self-doped polyaniline (PSPANa) as a substrate. Monomer (N-3-sulfopropylaniline) was synthesized via ring-opening of propane sultone with excess aniline and polymerized in water using ammonium persulfate to obtain green water-soluble polymer. Vitamin-C (ascorbic acid) and cysteine showed unexpected sharp and instantaneous color change from blue to colorless sensing action. The stoichiometry of the analyte to polymer was determined as 3:2 and 4:1 with association (or binding) constants of K = 2.1 × 10(3) and 1.5 × 10(3) M(-1) for vitamin-C and cysteine, respectively. Efficient electron transfer from vitamin-C (also cysteine) to the quinoid unit of the polyaniline base occurred in solution; as a result, the color of the solution changed from deep blue to colorless. Cyclic voltammetry analysis of PSPANa showed the disappearance of the cathodic peak at -0.21 V upon the addition of analytes (vitamin-C and cysteine) and confirms the electron transfer from the analyte to the polymer backbone. Dynamic light scattering (DLS) and zeta potential techniques were utilized to trace the molecular interactions in the electron transfer process. DLS histograms of the polymer samples confirmed the existence of nanoaggregates of 8-10 nm in diameter. The polymers possessed typical amphiphilic structure to produce micellar aggregates which facilitate the efficient electron transfer occurred between the analyte and polyaniline backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号