首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new benzothizole-based fluorescent probe 1 for Hg2+ recognition utilizing “ESIPT+AIE” strategy has been developed. In THF/H2O (1:1, v/v, PBS 20 mM, pH = 8.5) mixed solution, probe 1 displays rapid fluorescence responses to Hg2+ ions with high selectivity and sensitivity through Hg2+-triggered releasing of a compound possessing “ESIPT+AIE” characteristics. Cell imaging investigations indicate that probe 1 is cell permeable with low toxicity to MCF-7 cells, and applicable to detect Hg2+ ions in living MCF-7 cells.  相似文献   

2.
In this present study, a simple cation chemoprobe 1 bearing naphthol OH and imine group was designed and synthesized, which was identified as an aggregation induced emission (AIE) active molecule with excited state intramolecular proton transfer (ESIPT) features. In addition, 1 showed both colorimetric detection for Fe3+ and turn-on fluorescence response for Al3+. The binding ratio of 1 to Fe3+ and Al3+ were determined both to be 1:1 via Job’s plot and ESI-mass spectrometry analysis. The limit of detection (LOD) of probe 1 to Fe3+ and Al3+ were 0.10 and 0.43 μM, respectively. Moreover, probe 1 could be used to quantify Fe3+ and Al3+ in environmental water samples.  相似文献   

3.
Alkaline phosphatase(ALP)is one of essential biomarkers in mammalian tissue.Here we report a ratiometric probe for ALP,which is rationally designed and synthesized by employing ESIPT fluorophore N-(3-(benzo[d]thiazol-2-yl)-4-hydroxyphenyl)benzamide(BTHPB).The enzymatic dephosphorylation converts the probe to BTHPB,which exhibits a large spectral red-shift(120 nm),allowing extremely high sensitivity of ALP sensing at 0.004 mU/mL.The probe also shows excellent biocompatibility and has been applied for monitoring the endogenic ALP in living cells.  相似文献   

4.
We report a turn-on fluorescent probe for H2S through a cascade reaction using a new trap group 4-(bromomethyl)benzoate, based on excited-state intramolecular proton transfer (ESIPT) sensing mechanism. The probe showed good selectivity and high sensitivity towards H2S and it was capable of detecting and imaging H2S in living HeLa cells, indicating its potential biological applications.  相似文献   

5.
A new fluorescent probe, based on an amphiphilic Schiff-base zinc(II) complex, 1, for the sensitive detection of some important classes of alkaloids is presented. It exhibits optical absorption changes and fluorescence enhancement upon formation of 1:1 1·alkaloid adducts. Four diverse classes of alkaloids, represented by their basic structures and related representative prototypes, are investigated, through the study of optical and binding properties of 1·alkaloid adducts. It is found that the chromogenic and fluorogenic complex 1 is selective between these classes of alkaloids in the micromolar range, with a limit of quantification of 0.40 μM for nicotine and 0.43 μM for cinchonine.  相似文献   

6.
《Tetrahedron letters》2019,60(26):1696-1701
As an important parameter of intracellular metabolism, pH plays important roles in maintaining normal physiological processes. The abnormal pH could cause disorder of cell function which may cause neurological diseases. Herein, we present two novel ratiometric fluorescent probes to detect pH changes. The probes employed 2-(2′-hydroxyphenyl)benzothiazole as fluorescent platform, and displayed desirable fluorescence response to pH on the basis of excited state intramolecular proton transfer (ESIPT) process. The probe BtyC-1 showed green fluorescence at 546 nm under acidic conditions, while it displayed strong blue fluorescence at 473 nm and weak green fluorescence at 546 nm under alkaline conditions. Biological experiments demonstrated that the probe BtyC-1 could be successfully applied for the ratiometric imaging of cellular pH and the NH4Cl-induced pH changes in living cells.  相似文献   

7.
In this work, we design and synthesize the novel probe RC through introduction the 1-aza-4,13-dithia-15-crown-5 ring into the structure of rhodamine 6G hydrazide, where the N atom of crown ring is responsible for quenching of rhodamine fluorescence. The compound obtained behaves as multifunctional cation sensor providing selective fluorescent response to Au3+ and selective colorimetric response to Cu2+ ions in aqueous acetonitrile (1/1, v/v) at pH 7.0. The use of 10?5?M RC solution allowed reliable determination of target cations in the presence of a wide range of environmentally relevant ions with detection limits of 2?×?10?6?M and 5?×?10?7?M for gold and copper, respectively.  相似文献   

8.
《中国化学快报》2020,31(11):2941-2944
Iron is one of the essential trace elements in the human body. It plays an important role in human biology and pathology. Deregulation of iron levels in cells is associated with disease development. In this work, we synthesized a novel near-infrared intramolecular charge transfer (ICT) based ratiometric fluorescent probe to detect Fe2+, by using naphthalimide and indole moieties as building blocks. Our work showed that the radiometric probe has excellent selectivity, sensitivity and rapid response. Moreover, we could successfully perform real-time monitoring of Fe2+ in HeLa cells and C. elegans.  相似文献   

9.
Quinoline-based fluorescent probe as a recognition unit was designed and synthesized in this study. The probe R1 displayed excellent selectivity and sensitivity for cadmium ions (Cd2+) over a wide range of metal ions in acetonitrile-water (MeCN-H2O) mixed solution. In order to better understand the recognition mechanism between probe and Cd2+, the density functional theory calculations were performed. Finally, the colorimetric experiment result was observed and conveniently monitored by the naked eye, and a visual detection limit of 4 × 10?6 mol L?1 was achieved. These experimental results indicated the promising potential of the probe to detect Cd2+ in biological system. Furthermore, the probe R1 was successfully used for the highly sensitive detection of Cd2+ in living cells.  相似文献   

10.
Fluorescent Red GK, a commercially available coumarin-based dye, was developed as a “turn-off” fluorescent probe for detection of Cu2+ in aqueous solution. It exhibited high selectivity and sensitivity at room temperature. Upon addition of Cu2+, the strong fluorescence of Fluorescent Red GK was severely quenched and its color changed from orange to colorless under illumination with a UV lamp; the color of the solution also changed from pink to colorless. So, it can be used as a specific colorimetric and fluorescent probe for Cu2+ with a detection limit as low as 0.0634?μM.  相似文献   

11.
The detection of acetylcholinesterase (AChE) activity is of great significance for studying the physiological functions of AChE and clinical diagnosis of pesticide poisoning. Herein, a small-molecule fluorescent probe BDFA was rationally designed and readily synthesized via a one-step reaction, which enables qualitative and quantitative detection of AChE. BDFA emits a slight fluorescence in an aqueous medium, while the fluorescence is significantly enhanced under the catalysis of AChE. Mechanism studies reveal that BDFA eliminates the N, N-dimethyl carbamate protective group in the presence of AChE and then spontaneously undergoes intramolecular cyclization conversion to generate an intense fluorescent product. Based on the above mechanism, BDFA exhibits a sensitive, selective, rapid and stable “turn-on” fluorescence response to AChE, without interference from pH, ions, thiols, amino acids and other enzymes. The fluorescence intensity of BDFA at 525 nm has a linear relationship with the AChE concentration in the range of 0.0045–1.0 U/mL, and the detection limit is 4.5 mU/mL. Moreover, BDFA is suitable for rapidly diagnosing AChE activity in blood samples, thus providing an efficient and convenient tool for diagnosing organophosphorus and carbamate pesticide poisoning. Compared with the reported AChE fluorescent probes, BDFA exhibits apparent advantages including simple synthesis, low detection limit and fast response speed.  相似文献   

12.
本文设计合成了一种基于激发态分子内质子转移(ESIPT)机理的苯并噻唑类荧光探针TZ-1,并对其结构进行了表征。实验结果表明,在体积比1∶1的DMSO/PBS(10mmol/L,pH=7.4)溶液中,探针TZ-1具有高选择性并可在3s内实现荧光"off-on"(在365nm紫外灯照射下,由无荧光变成橙色荧光)识别S~(2-),检测限为81μmol/L,pH适用范围为6~12;此外,加入S~(2-)后探针TZ-1的DMSO/PBS溶液由无色变为浅黄色,通过裸眼即可识别S~(2-)。  相似文献   

13.
Rhodamine-based fluorescent probe is widely used in chemical analysis, environmental analysis and life sciences area due to their excellent optical properties. Based on the thiophilic property of Hg~(2+), using C = S structural motif as the core segment, our group have designed and synthesized three novel probes containing cinnamyl aldehyde with different substituents, exhibiting high selectivity and excellent sensitivity. The structure-property relationships of these probes have been investigated that the optical change caused by electron withdrawing effect and heavy atom effect. Furthermore, these Hg~(2+) probes could be applied in living mice imaging, which provide a promising tool for quantitative mercury(Ⅱ) ion imaging in living organism.  相似文献   

14.
A dual-site fluorescent probe that could discriminatively respond to Cys and HSO3- through two emission channels was reported, and it could further applied in imaging biothiols in living cells.  相似文献   

15.
合成了一种基于激发态分子内质子转移(ESIPT)的Cu^2+荧光探针L。通过Job’s曲线、MS和1H NM R研究了探针L对Cu^2+的识别机理。与其他金属离子共存时,探针L对Cu^2+表现出良好的选择性和灵敏度。加入Cu^2+后,探针L的荧光强度逐渐降低;在365 nm紫外光的照射下,探针L溶液的颜色由蓝色变成无色。探针L具有较低的检出限(0.47μmol/L)和短的响应时间(5s)。  相似文献   

16.
Due to the high affinity between dithiocarbamate(DTC) and Hg2+,a fluorescent probe based on squaraine chromophore with DTC side arm for Hg2+via coordination induced deaggregation signaling has been designed and synthesized.Squaraine has a high tendency to aggregate in aqueous solution,and such self-aggregation usually results in a dramatic absorption spectral broadening with fluorescence emission quenching.The combination of the DTC side arm of the probe with Hg2+induces steric hindrance,leading to the deaggregation of the dye complex,companying with a fluorescence emission restoration.In EtOH–H2O(20:80,v/v) solution,this ‘‘turn on' fluorescent probe has high selectivity and sensitivity toward Hg2+over other metal ions,and the limit of detection for Hg2+was estimated as2.19 ? 10à8mol/L by 3s/k.  相似文献   

17.
A new ESIPT-based fluorescent probe, PHC2, for the detection of hypochlorous acid has been rationally designed and developed. Endowed by the specific reaction between hypochlorous acid and phenyl azo group, PHC2 features high degree of selectivity and sensitivity for HClO with a low detection limit (13.2 nM) under physiological conditions in neutral aqueous solution.  相似文献   

18.
《中国化学快报》2020,31(11):2933-2936
A highly sensitive fluorescent sensor ZnDN was designed, synthesized and used for tracking intracellular zinc ions in various living cells and direct imaging of prostatic tissue in mice. ZnDN was prepared from the heterocyclic-fused naphthalimide fluorophore, and the zinc receptor, N,N-bis(2-pyridylmethyl)ethylenediamine (BPEN). Upon addition of Zn2+ to the solutions of ZnDN, a remarkable fluorescence enhancement was observed, which could be attributed to the photo-induced electron transfer (PET) mechanism. Since ZnDN exhibited high sensitivity toward Zn2+ in phosphate buffer solution, with a limit of detection of 4.0 × 10−9 mol/L, it was further applied for the imaging of exogenous and endogenous Zn2+ in different living cells. Living cells imaging experiments suggested that ZnDN could image the changes of intracellular free zinc ions, and could be used for two-photon imaging. Moreover, flow cytometry suggested that ZnDN could distinguish cancerous prostate cells from normal cells. Animal experiments indicated that ZnDN had the potential in imaging prostate tissue in vivo.  相似文献   

19.
A novel fluorophore pyrido[1,2-a]benzimidazole was synthesized and used as a fluorescent probe for hypochlorite based on the oxidation of hydrazine to carboxyl group. The detection limit was measured to be as low as 7.0?nM. The probe can realize fast-detection for hypochlorite within 60?s. Furthermore, it could be used for imaging in living cells.  相似文献   

20.
The development of rapid and simple approaches for detection of G-quadruplex DNA structures has attracted significant attention to disclose their diverse physiological and pathological functions. Thiazole orange (TO) is a common fluorescence probe used for the detection of G-quadruplexes. However, it still suffers from some common problems like non-selective for G-quadruplex and emission in the lower wavelength region of spectrum, thus hampering its further applications. Probes with turn-on fluorescence in the far-red region are highly sought-after due to minimal auto-fluorescence and cellular damage. In this paper, we described a far-red fluorescent probe (L-1) by introducing an amine group into styrylquinolinium scaffold. The experimental results indicated that L-1 exhibited significant fluorescence enhancement when treated with G-quadruplexes but retained weak fluorescence in the presence of duplex DNAs. In addition, this probe also displayed higher binding affinity for parallel G-quadruplexes. The characteristics of L-1 were further investigated with UV–vis spectrophotometry, fluorescence, circular dichroism, KI quenching, FID assay and molecular docking to validate optical photophysical properties, as well as the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号