首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
2.
This study addresses gas–liquid two-phase flows in polymer (PMMA) micro-channels with non-molecularly smooth and poorly wetting walls (typical contact angle of 65°) unlike previous studies conducted on highly wetting molecularly smooth materials (e.g., glass/silicon). Four fundamentally different topological flow regimes (Capillary Bubbly, Segmented, Annular, Dry) were identified along with two transitory ones (Segmented/Annular, Annular/Dry) and regime boundaries were identified from the two different test chips. The regime transition boundaries were influenced by the geometry of the two-phase injection, the aspect ratio of the test micro-channels, and potentially the chip material as evidenced from comparisons with the results of previous studies. Three principal Segmented flow sub-regimes (1, 2, and 3) were identified on the basis of quantified topological characteristics, each closely correlated with two-phase flow pressure drop trends. Irregularity of the Segmented regimes and related influencing factors were addressed and discussed. The average bubble length associated with the Segmented flows scaled approximately with a power law of the liquid volumetric flow ratio, which depends on aspect ratio, liquid superficial velocity, and the injection system. A simplified semi-empirical geometric model of gas bubble and liquid plug volumes provided good estimates of liquid plug length for most of the segmented regime cases and for all test-channel aspect ratios. The two-phase flow pressure drop was measured for the square test channels. Each Segmented flow sub-regime was associated with different trends in the pressure drop scaled by the viscous scale. These trends were explained in terms of the quantified flow topology (measured gas bubble and liquid plug lengths) and the number of bubble/plug pairs. Significant quantitative differences were found between the two-phase pressure drop in the polymer micro-channels of this study and those obtained from previous glass/silicon micro-channel studies, indicating that the effect of wall surface properties is important. Pressure drop trends on the capillary scale along gas bubbles extracted from the measurements in square micro-channels indicated a linear dependence on the Capillary number and did not agree with those predicted by highly idealized theory primarily because explicit and implicit assumptions in the theory were not relevant to practical conditions in this study.  相似文献   

3.
The transient behavior of compressible gas– particle flows produced in shock tubes with particle-laden driver section is studied. Particular attention is focused on the time scales with which the solution approaches the equilibrium state. Theoretical estimates indicate that the gas and particle contact surfaces equilibrate first, followed by the shock wave, and finally by the expansion fan. The estimates are in good agreement with numerical simulations. The simulations also show that the approach to equilibrium condition of the shock speed is non-monotonic (monotonic) if the mass fraction of particles initially located in the driver section is below (above) a particle-diameter dependent critical value. For the speed of the particle contact surface, the reverse trends are observed.   相似文献   

4.
The physical basis of liquidcrystal thermography, which allows visualization and measurement of temperature and heatflux fields, are expounded. An experimental technique and methods of obtaining quantitative results are described. Two approaches (monochromatic and chromatic) to interpretation of visualization data are considered. Results illustrating the possibilities of the method in an aerophysical experiment are given.  相似文献   

5.
In this sequel to a rather recent paper on the classical problem of Helmholtz–Kirchhoff flows by Vic. V. Sychev (TsAGI Sci J 41(5):531–533, 2010), the representation of the flow far from the body and its specific implications discussed in that study are revisited. Here the concise derivation of these findings resorts to well-known Levi-Cività’s method and, alternatively, only fundamental properties of analytic functions and thin-airfoil theory. As particularly of interest when the well-known Kirchhoff parabola degenerates to an infinitely long cusp, integration constants debated controversially so far and important for the understanding and computation of those flows are specified by the integral conservation of momentum. Also, the parametric modification towards flows encompassing stagnant-fluid regions of finite extent and the previously unnoticed impact of higher-order terms on the associated high-Reynolds-number flows are addressed.  相似文献   

6.
The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor–Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available.  相似文献   

7.
The two-fluid model is widely adopted in simulations of dense gas–particle flows in engineering facilities. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas–particle flows is not isotropic. Moreover, in these models the two-phase velocity correlation is closed using dimensional analysis, leading to discrepancies between the numerical results, theoretical analysis and experiments. To rectify this problem, some two-phase turbulence models were proposed by the authors and are applied to simulate dense gas–particle flows in downers, risers, and horizontal channels; Experimental results validate the simulation results. Among these models the USM-Θ and the two-scale USM models are shown to give a better account of both anisotropic particle turbulence and particle–particle collision using the transport equation model for the two-phase velocity correlation.  相似文献   

8.
Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.  相似文献   

9.
The first part of this paper dealt with the conceptual issues encountered in the definition of the interfacial area and in the derivation of a transport equation. The second part has the following objectives: 1. to address the closure issues for the source terms appearing in the transport equation when dealing with a bubbly flow in a vertical pipe; 2. to provide a list of open questions to be answered before introducing a transport equation for the interfacial area concentration in a thermal–hydraulic computer code.  相似文献   

10.
In this paper we present detailed Euler–Euler Large Eddy Simulations (LES) of dispersed bubbly flow in a rectangular bubble column. The motivation of this study is to investigate the potential of this approach for the prediction of bubbly flows, in terms of mean quantities. The physical models describing the momentum exchange between the phases including drag, lift and wall force were chosen according to previous experiences of the authors. Experimental data, Euler–Lagrange LES and unsteady Euler–Euler Reynolds-Averaged Navier–Stokes results are used for comparison. It is found that the present model combination provides good agreement with experimental data for the mean flow and liquid velocity fluctuations. The energy spectrum obtained from the resolved velocity of the Euler–Euler LES is presented as well.  相似文献   

11.
Numerical results of the simulation of the Giesekus model in ω–D form, which has previously been introduced in Part I of this study, are presented. The model has been applied to the flow of a concentrated polymer solution through a planar 3.97:1 contraction. To obtain an accurate fit of the rheological properties of the fluid a four-mode model is used. The predictions of the numerical simulations are directly compared with the experimental results published by Quinzani et al. in 1994. For the velocity fields a good quantitative agreement is reached, especially in the upstream channel. Regarding the shear stress and first normal stress difference, qualitative predictions of the experimental profiles are obtained.  相似文献   

12.
A mixed Lagrangian/Eulerian ‘time-marching’ solver capable of predicting one-dimensional nucleating steam flows is described. Simple nucleation and droplet growth models are employed which avoid the use of variable empirical factors and which have been validated using existing experimental data from nozzle experiments performed in the steam tunnel of the Central Electricity Research Laboratories. Theoretical predictions are compared against experimental results encompassing all flow regimes likely to be encountered in a one-dimensional analysis of flow in a low pressure steam turbine. These include supercritical heat addition cases which display both steady and unsteady shock wave formation.  相似文献   

13.
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows   总被引:1,自引:0,他引:1  
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM- model), combining the unified second-order moment two-phase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM- model is also better than the k--kp- model and the k--kp-p- model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.The project supported by the Special Funds for Major State Basic Research of China (G-1999-0222-08), the National Natural Science Foundation of China (50376004), and Ph.D. Program Foundation, Ministry of Education of China (20030007028)  相似文献   

14.
The spherical expanded polystyrene particle–oil two-phase flow in a vertical pipe was used to simulate the dispersed phase distribution in laminar bubbly flows. A three-dimensional particle image tracking technique was used to track the particles in the flow to study the ordered structure of dispersed phase distribution and its transition to disorder. The ordered structures behaved as particle strings aligned in the flow direction as induced by the flow shear. The structures were quite durable in high liquid velocity flows and dispersed gradually as the liquid velocity decreased. In lower velocity flows, the particles tended to form clusters in the horizontal direction, as predicted by potential theory for spherical bubbles rising in a quiescent inviscid liquid and as observed in experiments on non-shear bubbly water flows.  相似文献   

15.
This paper introduces a two-equation turbulence model sensitized to deviations from simple shear flows. The closure is topography-parameter-free and is based on solving transport equations for the turbulence kinetic energy (k) and the turbulence length-scale (?). Brief model derivation details are given and test cases are presented to compare the model's performance to other closures and to experimental data. The flow examples demonstrate the advantage of the k–? model in non-simple shear flows.  相似文献   

16.
Measurements of air–water flow properties are reasonably simple in steady flows, but not so in unsteady flows. Some studies investigated periodic flows in which instantaneous data were averaged over several cycles. During the present work, new unsteady air–water flow measurements were performed in sudden open channel flow surges. Unsteady air–water flow measurements were performed in the wave front with an array of resistivity probes. The results demonstrated quantitatively strong aeration of the leading edge in terms of void fractions, bubble count rates and specific interface areas. Experimental results highlighted that this strongly aerated region was relatively short: i.e. typically 0.3 to 0.5 m long. Measurements of air and water chord sizes highlighted a wide range of bubble and droplet sizes. Time-variations of air–water flow structure were observed.
Hubert ChansonEmail: Fax: +61-7-33654599
  相似文献   

17.
We examine stability of fully developed isothermal unidirectional plane Poiseuille–Couette flows of an incompressible fluid whose viscosity depends linearly on the pressure as previously considered in Hron et al. [J. Hron, J. Málek, K.R. Rajagopal, Simple flows of fluids with pressure-dependent viscosities, Proc. R. Soc. Lond. A 457 (2001) 1603–1622] and Suslov and Tran [S.A. Suslov, T.D. Tran, Revisiting plane Couette–Poiseuille flows of a piezo-viscous fluid, J. Non-Newtonian Fluid Mech. 154 (2008) 170–178]. Stability results for a piezo-viscous fluid are compared with those for a Newtonian fluid with constant viscosity. We show that piezo-viscous effects generally lead to stabilisation of a primary flow when the applied pressure gradient is increased. We also show that the flow becomes less stable as the pressure and therefore the fluid viscosity decrease downstream. These features drastically distinguish flows of a piezo-viscous fluid from those of its constant-viscosity counterpart. At the same time the increase in the boundary velocity results in a flow stabilisation which is similar to that observed in Newtonian fluids with constant viscosity.  相似文献   

18.
For non-dimensional pressure gradients sufficiently low and Reynolds numbers sufficiently high for the constant shear stress approximation to be valid at the first node of a turbulent wall layer computation, relationships for entropy generation rates are applied to popular wall ‘laws’. The resulting observations lead to a simple approach for evaluating the entropy generation rate per unit area in a computational fluid dynamics calculation for situations which satisfy this approximation.  相似文献   

19.
The problem of turbulent Couette flow driven by a statistically steady external wind is studied in the framework of spatially filtered Navier–Stokes equations. The phenomenon of wind-driven flow of water is represented by a layer of air modeled as Poiseuille flow (air sub-domain), coupled to a layer of water modeled as Couette flow (water sub-domain). We focus on changes in the statistics in either the air or the water sub-domain, due to the coupling with the other sub-domain. We also highlight dynamic flow structures forming near the air-water interface. Simulations based on different Reynolds numbers in the air and the water sub-domains are compared to computationally less demanding simulations with equal Reynolds numbers. Results of these simulations indicate strong similarities, i.e., the flow is well approximated by simulating air and water at the same Reynolds numbers. Further analysis shows that the flow in the water domain shares important features with classical Couette flows. The horizontal turbulent mixing renders a thinner boundary layer in the water sub-domain. Moreover, an increased intermittency in the flow velocities is observed, which may be linked to so-called splat events near the air-water interface. These splats characterize the interaction of coherent structures across the interface, being stronger in the water phase. An analysis of the pressure-strain correlation near the air-water interface on the water side shows that such splats are responsible for redistributing energy from the streamwise and spanwise directions, to the vertical direction. This behavior, although qualitatively similar to wall-bounded flows, differ mainly on the fact that most of the energy drained comes from the streamwise direction: in wall-bounded the main contributor is the spanwise direction. The boundary layers near the air-water interface show inclined vortical structures. Unlike in coupled Couette–Couette flow, the peak in the Reynolds stress is displaced from the channel’s center into the buffer region of the water sub-domain.  相似文献   

20.
A set of stereoscopic imaging techniques is proposed for the measurement of rapidly flowing dispersions of opaque particles observed near a transparent wall. The methods exploit projective geometry and the Voronoï diagram. They rely on purely geometrical principles to reconstruct 3D particle positions, concentrations, and velocities. The methods are able to handle position and motion ambiguities, as well as particle-occlusion effects, difficulties that are common in the case of dense dispersions of many identical particles. Fluidization cell experiments allow validation of the concentration estimates. A mature debris-flow experimental run is then chosen to test the particle-tracking algorithm. The Voronoï stereo methods are found to perform well in both cases, and to present significant advantages over monocular imaging measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号