首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diffusion rate and restricted diffusion of cell-associated water in ripening barley seeds were examined by NMR microscopy using the pulse gradient spin-echo and the pulse gradient stimulated-echo methods. Changes in the mobility of cell-associated water and properties of cell membranes during ontogeny seed were assessed. Diffusion coefficients for bulk water transfer were high (greater than 0.9 × 10−5 cm2/s) throughout the growth stages. The highest diffusion coefficient observed was comparable to the self-diffusion coefficient of pure water. Water compartment sizes and the permeability of the cell membranes in the seed were determined by Meerwall and Ferguson's modification of the model of Tanner or by the method of Callaghan et al. The endosperm consisted of large cells and vascular bundle small cells with permeable membranes.  相似文献   

2.
《Magnetic resonance imaging》1998,16(9):1023-1032
The “concept of restricted intracellular water diffusion at permeable boundaries,” which was recently used to model diffusion-weighted 1H NMR experiments on glioma cells, was applied to measurements on the rat brain in vivo. Combined with the “concept of extracellular tortuosity,” various physiological states of the brain were simulated. Hereby, a variable intracellular volume fraction, intracellular exchange time, and extracellular tortuosity factor were considered for young, adult, and ischemic rat brains. The model simulated the cytotoxic shift of extracellular water, changes in membrane permeability and tissue morphology, and was able to explain the diffusion time dependence as well as the non-monoexponentiality of the diffusion attenuation curves. Preliminary diffusion time dependent experiments on the healthy rat brain (1H NMR imaging) agreed well with the theoretical concept. Hereby, the intracellular water signal was separated from extracellular signal contributions by large diffusion weighting. It showed the characteristic of restricted diffusion as well as a signal decay due to the exchange of intracellular water across the plasma membrane. A map of the mean intracellular exchange time for water in living animal brain was determined, and the upper limit in rat brain was evaluated to 15 ms. The presented methods can be applied to correlate local differences in a map of exchange times with tissue morphology and to detect pathological deviations of the exchange time, e.g., during ischemia.  相似文献   

3.
Luo D  He L  Cheng S  Yu J  Gao D 《Cryo letters》2003,24(3):161-170
Using a continuum model for multi-component phase change system, the freezing of cell suspension in a ternary solution, H2O-NaCl-CPA (cryoprotective agent) inside a flat bag is investigated numerically in this study. The temperature and phase change history, intracellular water loss, and the volume change of the cells at different locations inside cell suspension are calculated. Numerical results reveal that although the sample boundary is cooled at a constant rate, different locations inside the sample experienced different temperature changes and cooling rates. The highest cooling rates occur at internal locations. The cell volume change is location-dependent.  相似文献   

4.
The 2H NMR resonance from HDO (D=2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix=0, gave an estimate of the efflux rate constant at 15 degrees C of 31.5+/-2.2 s(-1) while at 25 degrees C it was approximately 50 s(-1). These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been achieved.  相似文献   

5.
In 1990, Van Den Enden et al. proposed a method for the determination of water droplet size distributions in emulsions using a pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) T1-weighted stimulated-echo technique. This paper describes both the T1-weighted spin-echo sequence, an improved method based on this earlier work, and, the standard PFG spin-echo sequence. These two methods were compared for water self-diffusion coefficient measurement in the fatty protein concentrate sample used as a 'cheese model.' The transversal and longitudinal relaxation parameters T1 and T2 were determined according to the temperature and investigated for each sample; fat-free protein concentrate sample, pure anhydrous milk fat, and fatty protein concentrate sample. The water self-diffusion in fat-free protein concentrate samples followed a linear behavior. Consequently, the water self-diffusion coefficient could be easily characterized for fat-free protein concentrate samples. However, it seemed more complicated to obtain accurate water self-diffusion in fatty protein concentrate samples since the diffusion-attenuation data were fitted by a bi-exponential function. This paper demonstrates that the implementation of the T1-weighted spin-echo sequence, using the different T1 properties of water and fat phases, allows the accurate determination of water self-diffusion coefficient in a food product. To minimize the contribution of the 1H nuclei in the fat phase on the NMR echo signal, the fat protons were selectively eliminated by an additional 180 degrees pulse. This new method reduces the standard errors of diffusion data obtained with a basic spin-echo technique, by a factor of 10. The effectiveness of the use of the T1-weighted spin-echo sequence to perform accurate water self-diffusion coefficients measurement in fatty products is thus demonstrated.  相似文献   

6.
The diffusion phenomenon of a nonionic surfactant, polyoxyethylene sorbitan monooleate (POE-SMO), micelle in aqueous solution was investigated by pulsed field gradient nuclear magnetic resonance (PFG NMR) with a high gradient strength of 17.4 T/m at the diffusion timet d varied from 3 to 300 ms. This high gradient strength allowed us to measure the slow self-diffusion coefficient of POE-SMO micelle, and the short diffusion time below 10 ms showed the restricted diffusion of the micelle. At the shortt d the self-diffusion of the micelle was restricted and the restricted sizes were 1.8, 1.5, and 0.8 μm for the POE-SMO concentration of 100, 200 and 300 mM, respectively, and 0.6 μm for the POE-SMO only. The possible reason of this restriction was assumed to be the formation of a spatial network or a micellar clustering. Furthermore, a proton exchange between water molecule and surfactant OH group on the micelle surface was proposed. With respect to this proposal, the residence time of the proton at the micelle surface and the thickness of the surface were investigated from proton self-diffusion coefficients by PFG NMR.  相似文献   

7.
Self-diffusion of D2O in partially filled silicalite-1 crystals was studied at 25°C by 2H nuclear magnetic resonance (NMR) with bipolar field gradient pulses and longitudinal Eddy-current-delay. For the first time, reliable experimental diffusion data for this system were obtained. Analysis of NMR diffusion decays revealed the presence of a continuous distribution of apparent self-diffusion coefficients (SDCs) of water, ranging from 10−7 to ∼10−10 m2/s, which include values much higher and lower than that of bulk water (∼10−9 m2/s) in liquid phase. The observed distribution of SDC changes with variation of the diffusion time in the range of 10–200 ms. A two-site Kärger exchange model was successfully fitted to the data. Finally, the water distribution and exchange in silicalite-1 pores were described by taking into account (a) a gas-like phase in the zeolite pores, a gas-like phase in mesopores and an intercrystalline gas-like phase and (b) intercrystalline liquid droplets with intermediate exchange rate with the other phases. The other phases experience fast exchange on the NMR diffusion time scale. Diffusion coefficients and mean residence times of water in some of these states were estimated.  相似文献   

8.
We have investigated the inactivation of Saccharomyces cerevisiae (yeast cells) by ultrasonic irradiation. The amplitude on the vibration face contacting the sample solution was used as an indication of the ultrasonic power intensity. The effects of the amplitude on the vibration face and the initial cell numbers on the sonolytic inactivation of yeast cells have been investigated using a horn-type sonicator (27.5 kHz). The inactivation of the yeast cells by ultrasonic irradiation shows pseudo first-order behavior. The inactivation rate constant varied from 0.0007 to 0.145 s(-1) when the amplitude on the vibration face was in the range of 1-7 microm(p-p). The change in the inactivation rate constant as a function of the amplitude on the vibration face was similar to that of the OH radical formation rate under the same conditions. The threshold of this sonicator was 3 microm(p-p) with the amplitude on the vibration face. The initial cell numbers (from 10(2) to 10(5) mL(-1)) had an influence on the inactivation of the yeast cells by ultrasonic irradiation. The inactivation rate constants varied from 0.023 to 6.4 x 10(-3) s(-1), and the inactivation by ultrasonic irradiation was fastest at the lowest initial cell numbers. In a squeeze-film-type sonicator (26.6 kHz), 90% inactivation of the yeast cells was achieved by ultrasonic irradiation for 60 min.  相似文献   

9.
One- (1-D) and two-dimensional (2-D) carbon-13 NMR exchange measurements in powder samples of isotopically normal durene under magic angle spinning (MAS) are reported. The experiments include rotor synchronized 2-D exchange (RS2DE), 1-D magnetization transfer (MT) and time reverse ODESSA (tr-ODESSA). The latter two experiments were performed as a function of several external parameters, including proton decoupling field during mixing time, sample spinning rate and partly, of temperature. The effects of these parameters on the spin exchange induced by spin diffusion and by chemical, or physical exchange, is discussed. Spin exchange between all types of carbons in the durene molecules occurs on the time scale of seconds. From the dependence of the spin exchange rate on the external parameters it is concluded that the process is dominated by spin diffusion. On the basis of these results an upper limit of 10(-16) cm2 s(-1) can be set for the self-diffusion constant in crystalline durene.  相似文献   

10.
The purpose of this study was to investigate the effects of biophysical factors on the diffusion and the relaxation time T(2) independently. Certain properties of the extracellular and the intracellular space may change radically in pathological conditions resulting in water diffusion changes. A tissue model consisting of red blood cells was studied. The extra- and intracellular spaces were modified osmotically and by suspending medium concentration. Diffusion measurements were evaluated with regard to the effective medium theory. Neither the nature of the protein in the extracellular space nor an increased level of intracellular hydration caused a significant net water diffusion change in the cell suspension. The relaxation time T(2) exhibited very little dependence on the extracellular volume fraction or the concentration or the nature of the protein in the extracellular space. An increased level of intracellular hydration resulted in systematically larger T(2) values. It seems probable that increases in extracellular protein concentrations or in the extent of intracellular hydration do not play a significant role in the diffusion changes detected in pathological conditions. T(2) appears to depend on the level of hydration or the total water content but is seemingly less dependent of the concentration and the nature of the extracellular protein in our model solutions.  相似文献   

11.
The NMR "q-space" experiment conducted on water provides information on the sizes of repeated structures on the micrometer-length scale in heterogeneous samples, including cell suspensions or tissues. Under some circumstances these plots display coherence peaks, and it has been implied theoretically that the position of the peaks will vary with the rate of molecular exchange across the membranes. This has been demonstrated (qualitatively) with human erythrocytes in suspension. Thus, in the quest for a quantitative approach to the interpretation of such data, we address here the "inverse problem," namely the estimate of the permeability coefficient of membranes from q-space experiments. The present work describes theoretical predictions of q-space plots from molecules diffusing in a simple system of parallel semi-permeable membranes arranged with separations that alternate between two different values; this was designed to (loosely) mimic the intra- and extracellular compartments in a suspension of cells or a tissue. The development of the theory was facilitated by symbolic computation, and the analysis of synthetic data was shown to be achievable by the use of a three-layer back-propagation artificial neural network.  相似文献   

12.
The dependence of the water self-diffusion coefficients as well as of the proton spin-lattice and spin-spin relaxation rates on the concentration have been studied in the gelatin-water system and in hydrated native collagen. The bound and free water fractions and the corresponding spin-spin and spin-lattice relaxation rates have been determined within the multi-phase water proton exchange model. Various theoretical models for the water proton cross-relaxation to the biopolymer have been studied and the results compared with the observed Larmor frequency dependence of the water proton spin-lattice relaxation rate.  相似文献   

13.
 采用平衡分子动力学(EMD)方法,模拟研究了温度范围为243~348 K、压强范围为0.1~400 MPa条件下水的热力学性质、结构和动力学性质,模拟结果与实验值吻合较好。模拟结果表明,随着压强的增大,水分子间的氢键作用增强,扩散系数减小;随着温度的升高,水分子间的氢键作用减弱,有序程度下降,扩散系数增大。但在过冷水中,扩散系数随压强的增大有增加的趋势。  相似文献   

14.
An understanding of the cellular permeability for water is needed to evaluate MR images of complex tissues, such as liver, and to interpret the effects of contrast agents. To obtain data essential for such an understanding we measured water exchange across the isolated rodent hepatocyte membrane by proton NMR relaxation with dextranmagnetite as a relaxation agent. The results are treated as water exchange in a two-compartment system, and possible reasons for deviations from that behavior are analyzed. The mean residence time of intracellular water was approximately 40 ms at 37 degrees C. We found the lower limit for the diffusional permeability of the hepatocyte membrane to be 8 x 10(-3) cm s-1. These results, combined with consideration of hepatic anatomy indicate that the failure to observe effects on the T1 of liver from particulate contrast agents such as magnetite, Gd-starch, and liposome encapsulated Mn2+ is due to the localization of these agents in the Kupffer cells. Also, the nonexponential T1 decay observed in normal liver is unlikely to be due to slow exchange of water between compartments.  相似文献   

15.
We have used combined D-T1 and T1-T2 correlation experiments to explore water compartments in rat heart tissue (myocardium). The results show that two main compartments can be identified, which we assign to extracellular (ec) and intracellular (ic) water. The exchange rate of water across the cell membrane was found to be on the order of 0.1 Hz. In addition, the T1-T2 correlation measurements indicate that the ic compartment contain two T2 populations.  相似文献   

16.
Transport of water and ions through cell membranes plays an important role in cell metabolism. We demonstrate a novel technique to measure water transport dynamics using erythrocyte suspensions as an example. This technique takes advantage of inhomogeneous internal magnetic field created by the magnetic susceptibility contrast between the erythrocytes and plasma. The decay of longitudinal magnetization due to diffusion in this internal field reveals multi-exponential behavior, with one component corresponding to the diffusive exchange of water across erythrocyte membrane. The membrane permeability is obtained from the exchange time constant and is in good agreement with the literature values. As compared to the other methods, this technique does not require strong gradients of magnetic field or contrast agents and, potentially, can be applied in vivo.  相似文献   

17.
Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty-two of these patients also underwent measurement of the transverse relaxation time (T2). Only one plaque was evaluated in each patient. Based on prior knowledge, 12 plaques were classified as being 3 mo or less in age, and 7 plaques were classified as being more than 3 mo old. In all 25 plaques, water self-diffusion was found to be higher than in apparently normal white matter. Furthermore, water self-diffusion was found to be higher in acute plaques compared with chronic plaques. Finally, a slight tendency toward a relationship between the diffusion capability and T2 was found. We believe that an increased diffusion capability signifies an increase of the extracellular water space, which probably is related to the degree of demyelination. Thus, measurement of water self-diffusion in multiple sclerosis plaques may contribute to the study of pathogenesis of demyelination.  相似文献   

18.
The water proton T1 in human blood diluted by its own plasma was measured with a FT-NMR spectrometer operating at 60MHz for protons. A linear relationship (with a correlation of 0.99) was found between the 1/T1 and hemoglobin content(Hb) in the blood. The exchange of water between the extracellular plasma and the intracellular Hb in blood is known to satisfy the fast chemical exchange conditions, and the decay of magnetization in blood is reported to have a single exponential. Therefore, the obtained relationship should represent fast chemfcal intracellular Hb and the extrace exchange between the lular plasma.  相似文献   

19.
31P NMR 1D profiling was successfully introduced to measure macroscale mutual-diffusion coefficients (D(m)) of phosphate ions in dextran gels. Series of 1D profiles describing the phosphate concentration along cylindrical dextran gels were acquired at different times. These profiles that included over 600 points could be fitted using equations derived from Fick's law, with D(m) as the single fitting parameter. Release and penetration profiles were recorded providing two alternative approaches for allowing the determination of D(m). The D(m) values were compared with microscale self-diffusion coefficients (D(s)) measured by pulsed field gradient spin echo (PFG-SE) technique. D(m) values, measured between 25 and 45 degrees C, were systematically lower than D(s). The experimental diffusion time and the associated diffusion length of D(s) (60 ms, 10 microm) are short compared to those of D(m) (up to 18 h, 50 mm). These scale differences are considered to be the origin of different D(s) and D(m) and provide information relative to the network in these gels.  相似文献   

20.
A new technique for the generation of multilayered molecular nanoparticles is presented. Core-shell composite nanoparticles of CO(2) with varied composition have been investigated by Fourier-transform infrared spectroscopy over 600 s at 78 K. The isotopically different zones of the particles turned out to have completely different spectra in the nu(3) region: a tub structure (mantle) and a head-and-shoulders structure (core). From the aggregation behavior of both components the particle formation time was found to be 0.1 s. Low-temperature self-diffusion of airborne molecular nanoparticles has been monitored for the first time. The self-diffusion coefficient for (12)CO(2)/(13)CO2 nanocomposites at 78 K was determined from the time evolution of the nu(1) + nu(3) combination band to about 7 x 10(-20) m(2)/s. The work represents a major advance toward nanoengineering of molecular nanoparticles at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号