首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.List of symbols c test airfoil chord - C vortex generator airfoil chord - TA test airfoil - TE test airfoil trailing edge - TE G vortex generator airfoil trailing edge - t dimensionless time-interval measured from the vortex passage by the test airfoil trailing edge: gDt=(T-T- TEU/c - T time-interval measured from the start of VGA rotation - U free stream velocity - U vortex induced velocity fluctuation - VGA vortex generator airfoil - y distance in which the vortex passes the test airfoil - Z vortex circulation coefficient: Z=/(U · c/2) - vortex generator airfoil inclination angle - vortex circulation - vortex strength: =/2  相似文献   

2.
The cross-correlation technique and Laser Induced Fluorescence (LIF) have been adopted to measure the time-dependent and two-dimensional velocity and temperature fields of a stably thermal-stratified pipe flow. One thousand instantaneous and simultaneous velocity and temperature maps were obtained at overall Richardson numberRi = 0 and 2.5, from which two-dimensional vorticity, Reynolds stress and turbulent heat flux vector were evaluated. The quasi-periodic inclined vortices (which connected to the crest) were revealed from successive instantaneous maps and temporal variation of vorticity and temperature. It has been recognized that these vortices are associated with the crest and valley in the roll-up motion.List of symbols A Fraction of the available light collected - C Concentration of fluorescence - D Pipe diameter - I Fluorescence intensity - L Sampling length along the incident beam - I 0 Intensity of an excitation beam - I c (T) Calibration curve between temperature and fluorescence intensity - I ref Reference intensity of fluorescence radiation - Re b Reynolds number based on bulk velocity,U b D/v - Ri Overall Richardson number based on velocity difference,gDT/U 2 - t Time - t Time interval between the reference and corresponding matrix - T Temperature - T 1,T 2 Temperature of lower and upper layer - T * Normalized temperature, (T–T 1)/T - T c (I) Inverse function of temperature as a function ofI c - T ref Reference temperature - T Temperature difference between upper and lower flow,T 2T 1 - U 1 Velocity of lower stream - U 2 Velocity of upper stream - U b Bulk velocity - U c Streamwise mean velocity atY/D=0 - U Streamwise velocity difference between upper and lower flow,U 1U 2 - u, v, T Fluctuating component ofU, V, T - U, V Velocity component of X, Y direction - X Streamwise distance from the splitter plate - Y Transverse distance from the centerline of the pipe - Z Spanwise distance from the centerline of the pipe - Quantum yield - Absorptivity - vorticity calculated from a circulation - Kinematic viscosity - circulation  相似文献   

3.
The present paper is devoted to the theoretical study of the secondary flow induced around a sphere in an oscillating stream of an elastico-viscous liquid. The boundary layer equations are derived following Wang's method and solved by the method of successive approximations. The effect of elasticity of the liquid is to produce a reverse flow in the region close to the surface of the sphere and to shift the entire flow pattern towards the main flow. The resistance on the surface of the sphere and the steady secondary inflow increase with the elasticity of the liquid.Nomenclature a radius of the sphere - b ik contravariant components of a tensor - e contravariant components of the rate of strain tensor - F() see (47) - G total nondimensional resistance on the surface of the sphere - g ik covariant components of the metric tensor - f, g, h secondary flow components introduced in (34) - k 0 measure of relaxation time minus retardation time (elastico-viscous parameter) - K =k 0 2/V 0 2 , nondimensional parameter characterizing the elasticity of the liquid - n measure of the ratio of the boundary layer thickness and the oscillation amplitude - N, T defined in (44) - p arbitrary isotropic pressure - p ik covariant components of the stress tensor - p ik contravariant components of the stress tensor associated with the change of shape of the material - R =V 0 a/v, the Reynolds number - S =a/V 0, the Strouhall number - r, , spherical polar coordinates - u, v, w r, , component of velocity - t time - V(, t) potential velocity distribution around the sphere - V 0 characteristic velocity - u, v, t, y, P nondimensional quantities defined in (15) - reciprocal of s - density - defined in (32) - defined in (42) - 0 limiting viscosity for very small changes in deformation velocity - complex conjugate of - oscillation frequency - = 0/, the kinematic coefficient of viscosity - , defined in (52) - (, y) stream function defined in (45) - =(NT/2n)1/2 y - /t convective time derivative (1) ik   相似文献   

4.
Some results are presented of experimental studies of the equilibrium temperature and heat transfer of a sphere in a supersonic rarefied air flow.The notations D sphere diameter - u, , T,,l, freestream parameters (u is velocity, density, T the thermodynamic temperature,l the molecular mean free path, the viscosity coefficient, the thermal conductivity) - T0 temperature of the adiabatically stagnated stream - Te mean equilibrium temperature of the sphere - Tw surface temperature of the cold sphere (Twe) - mean heat transfer coefficient - e air thermal conductivity at the temperature Te - P Prandtl number - M Mach number  相似文献   

5.
The injection moulding of thermoplastic polymers involves, during mould filling, flows of hot melts into mould networks, the walls of which are so cold that frozen layers form on them. Theoretical analyses of such flows are presented here. Br Brinkman number - c L polymer melt specific heat capacity - c S frozen polymer specific heat capacity - e exponential function - erf() error function - Gz Graetz number in thermal entrance region - Gz * modified Graetz number in thermal entrance region - Gz overall Graetz number - h channel half-height - h * half-height of polymer melt region - H mean heat transfer coefficient - k L polymer melt thermal conductivity - k S frozen polymer thermal conductivity - ln( ) natural logarithm function - L length of thermal entrance region in pipe or channel - m viscosity shear rate exponent - M(,,) Kummer function - Nu Nusselt number - p pressure - P pressure drop in thermal entrance region - P f pressure drop in melt front region - Pe Péclet number - Pr Prandtl number - Q volumetric flow rate - r radial coordinate in pipe - R pipe radius - R * radius of polymer melt region - Re Reynolds number - Sf Stefan number - t time - T temperature - T i inlet polymer melt temperature - T m melting temperature of polymer - T w pipe or channel wall temperature - U(,,) Kummer function - u r radial velocity in pipe - u x axial velocity in channel - u y cross-channel velocity - u z axial velocity in pipe - V melt front velocity - w channel width - x axial coordinate in channel - x f melt front position in channel - y cross-channel coordinate - z axial coordinate in pipe - z f melt front position in pipe - () gamma function - dimensionless thickness of frozen polymer layer - i i-th term (i = 1,2,3) in power series expansion of - dimensionless axial coordinate in pipe - f dimensionless melt front position in pipe - dimensionless cross-channel coordinate - * dimensionless half-height of polymer melt region - dimensionless temperature - i i-th term (i = 0, 1, 2, 3) in power series expansion of - i first derivative of i with respect toø - i second derivative of i with respect toø - * dimensionless wall temperature - thermal diffusivity ratio - - latent heat of fusion - µ viscosity - µ * unit shear rate viscosity - dimensionless axial coordinate in channel - f dimensionless melt front position in channel - dimensionless pressure drop in thermal entrance region - f dimensionless pressure drop in melt front region - L polymer melt density - s frozen polymer density - dimensionless radial coordinate in pipe - * dimensionless radius of polymer melt region - ø dimensionless similarity variable in thermal entrance region - dummy variable - dimensionless contracted axial coordinate in thermal entrance region - dimensionless similarity variable in melt front region - * constant  相似文献   

6.
In the present paper an attempt has been made to find out effects of uniform high suction in the presence of a transverse magnetic field, on the motion near a stationary plate when the fluid at a large distance above it rotates with a constant angular velocity. Series solutions for velocity components, displacement thickness and momentum thickness are obtained in the descending powers of the suction parameter a. The solutions obtained are valid for small values of the non-dimensional magnetic parameter m (= 4 e 2 H 0 2 /) and large values of a (a2).Nomenclature a suction parameter - E electric field - E r , E , E z radial, azimuthal and axial components of electric field - F, G, H reduced radial, azimuthal and axial velocity components - H magnetic field - H r , H , H z radial, azimuthal and axial components of magnetic field - H 0 uniform magnetic field - H* displacement thickness and momentum thickness ratio, */ - h induced magnetic field - h r , h , h z radial, azimuthal and axial components of induced magnetic field - J current density - m nondimensional magnetic parameter - p pressure - P reduced pressure - R Reynolds number - U 0 representative velocity - V velocity - V r , V , V z radial, azimuthal and axial velocity components - w 0 uniform suction through the disc. - density - electrical conductivity - kinematic viscosity - e magnetic permeability - a parameter, (/)1/2 z - a parameter, a - * displacement thickness - momentum thickness - angular velocity  相似文献   

7.
Results of an experimental investigation of the flow around a NACA-4412 profile in an oscillating freestream are presented. The experiment took place in an Eiffel-type windtunnel at a chord Reynolds-number of Re = 2 · 105. Measurements of unsteady pressure distributions and boundary-layer profiles as well as flow photographs reveal that even at moderate reduced frequencies significant changes of the flow field may occur, provided that the relative amplitude of the freestream is sufficiently large. So a periodical separation and reattachment of the flow could be observed while in another case the periodical relaminarization of the boundary-layer could be found.List of symbols A relative amplitude of freestream velocity - A I relative amplitude of first harmonic of the freestream velocity - b span of the airfoil profile - C A lift-coefficient - C A st lift-coefficient in steady freestream - C p pressure-coefficient - d profile thickness - f frequency - H 12 shape factor - k reduced frequency - l chord length - p phase-average of pressure - p 0 total head - p static freestream pressure - p a ambient pressure - q dynamic head - Re mean Reynolds number - Re 2 Reynolds number - t current time - T phase time - u velocity in x-direction - u freestream-velocity - u amplitude of freestream-velocity - u a velocity at boundary-layer edge - u c cooling-velocity - u fluctuation of velocity in x-direction - u rms mean square of fluctuation - û nondimensional velocity, Fig. 3 - fluctuation of velocity in y-direction - w fluctuation of velocity in z-direction - x,y,z cartesian coordinates - X A distance of separation line from leading edge - angle of attack - nondimensional pressure gradient - boundary-layer thickness - 1 displacement-thickness - 2 momentum-thickness - kinematic viscosity - angular-velocity - () periodical component - (-) time-average - () stochastic component  相似文献   

8.
An analytical study was made to examine the effect of vascular deformability on the pulsatile blood flow in arterioles through the use of a suitable mathematical model. The blood in arterioles is assumed to consist of two layers — both Newtonian but with differing coefficients of viscosity. The flow characteristics of blood as well as the resistance to flow have been determined using the numerical computations of the resulting expressions. The applicability of the model is illustrated using numerical results based on the existing experimental data. r, z coordinate system - u, axial/longitudinal velocity component of blood - p pressure exerted by blood - b density of blood - µ viscosity of blood - t time - , displacement components of the vessel wall - T t0,T 0 known initial stresses - density of the wall material - h thickness of the vessel wall - T t,T stress components of the vessel - K l,K r components of the spring coefficient - C l,C r components of the friction coefficient - M a additional mass of the mechanical model - r 1 outer radius of the vessel - thickness of the plasma layer - r 1 inner radius of the vessel - circular frequency of the forced oscillation - k wave number - E 0,E t, , t material parameters for the arterial segment - µ p viscosity of the plasma layer - Q total flux - Q p flux across the plasma zone - Q h flux across the core region - Q mean flow rate - resistance to flow - P pressure difference - l length of the segment of the vessel  相似文献   

9.
Summary The physical properties of deflocculated china clay suspensions are studied in a combined steady and low-amplitude oscillatory shear flow. Concentration effects are examined and it is shown that, with increasing concentration, an initial shear thinning region is followed by a shear thickening one. Qualitative agreement is obtained between theory and experiment for a range of concentrations of suspensions, all of which exhibit marked elastic properties. The experimental results were obtained using a Weissenberg Rheogoniometer.
Zusammenfassung Es werden die physikalischen Eigenschaften deflockulierter Suspensionen von Porzellanerde in einer kombinierten stationären und oszillatorischen Scherströmung mit niedriger Amplitude studiert. Der Einfluß der Konzentration wird untersucht, und es wird gezeigt, daß mit wachsender Konzentration sich an den anfänglich allein vorhandenen Bereich mit Scherentzähung ein Bereich mit Scherverzähung anschließt. Zwischen Theorie und Experiment wird eine qualitative Übereinstimmung in einem Konzentrationsbereich gefunden, in dem ausgeprägte viskoelastische Eigenschaften vorhanden sind. Die experimentellen Ergebnisse werden mit Hilfe eines Weissenberg-Rheogoniometers erhalten.

c phase lag in oscillatory testing - D(t – t) deformation history - F, G non-dimensional complex functions of - complex conjugate ofF - G dynamic rigidity - i - I % increase in mean couple under superposed shear rates - I 1 moment of inertia of the top platen (i.e. cone) - J amplitude ratio, 1/ 1 - K 1 restoring constant of the torsion bar - q steady shear rate - r, , spherical polar coordinates - t current time - v i velocity vector - w/w concentration by weight - W a function of andt - 1 angular amplitude of the motion of the plate - shear rate - /q - apparent viscosity - dynamic viscosity - * complex dynamic viscosity - 0 limiting viscosity at small rates of shear - 0 gap angle in cone and plate system - 1, 2, 3, 4,µ 0 relaxation time constants - shear stress - 0 unperturbed shear stress - 1, 2 kernel functions - angular frequency of oscillation - steady angular velocity of the plate With 16 figures  相似文献   

10.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

11.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

12.
The failure of the current theories to predict the coating thickness of non-Newtonian fluids in free coating operations is shown to be a result of the effective slip at the moving rigid surface being coated. This slip phenomenon is a consequence of stress induced diffusion occurring in flow of structured liquids in non-homogeneous flow fields. Literature data have been analysed to substantiate the slip hypothesis proposed in this work. The experimentally observed coating thickness is shown to lie between an upper bound, which is estimated by a no-slip condition for homogeneous solution and a lower bound, which is estimated by using solvent properties. Some design considerations have been provided, which will serve as useful guidelines for estimating coating thickness in industrial practice.fa exponent in eq. (15) - b n/(4 –n)(n + 1) - Ca Capillary number - D diffusivity - De Deborah number - g acceleration due to gravity - G Goucher number - h thickness profile - h 0 final coating thickness - K consistency index - L length available for diffusion - L t tube length - n power-law index - P pressure drop - Q flow rate - R cylinder radius - R t tube radius - t time available for diffusion - T 0 dimensionless thickness without slip - T s dimensionless thickness with slip - U c theoretically calculated withdrawal velocity to match the film thickness - u s slip velocity - U withdrawal velocity - U w theoretically calculated withdrawal velocity based on solvent properties - U * effective withdrawal velocity - x distance in the direction of flow - y distance transverse to the flow direction - curvature coefficient - slip coefficient - curvature coefficient - rate of deformation tensor - u s /U - relaxation time - density - surface tension - shear stress in tube flow - w wall shear stress in tube flow - stress tensor - w wall shear stress - T s /T 0 NCL-Communication No. 2818  相似文献   

13.
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation A total cross-sectional area assigned to capillary bundle - A (i) physical cross-sectional area of tube i - c (i) ordered configurational label for droplets in tube i - c configuration label for tube i (order not considered) - D defined by Equation (26) - E(...) expectation value with respect to the trinomial distribution - S r () fractional flow of phase - k absolute permeability - k r relative permeability of phase - k r 0 endpoint relative permeability of phase - L capillary tube length in bundle model - m (i) number of droplets of phase a occupying tube i - n exponent for phase a in Equation (2) - N number of droplets in bundle model - N c capillary number - p pressure - p(c') probability of configuration c - Q (i) total volume flow rate in tube i - S saturation of phase - S flowing saturation of phase - S r residual saturation of phase - S r () saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( ) - t c residence time for droplet configuration c - v (i) total fluid velocity in bundle tube i - , phase label - p pressure differential across capillary bundle - (i) tube conductivity defined by Equation (7) - viscosity of phase - interfacial tension - gradient operator - ... average over tube droplet configurations  相似文献   

14.
Calculations of the flow of the mixture 0.94 CO2+0.05 N2+0.01 Ar past the forward portion of segmentai bodies are presented. The temperature, pressure, and concentration distributions are given as a function of the pressure ahead of the shock wave and the body velocity. Analysis of the concentration distribution makes it possible to formulate a simplified model for the chemical reaction kinetics in the shock layer that reflects the primary flow characteristics. The density distributions are used to verify the validity of the binary similarity law throughout the shock layer region calculated.The flow of a CO2+N2+Ar gas mixture of varying composition past a spherical nose was examined in [1]. The basic flow properties in the shock layer were studied, particularly flow dependence on the free-stream CO2 and N2 concentration.New revised data on the properties of the Venusian atmosphere have appeared in the literature [2, 3] One is the dominant CO2 concentration. This finding permits more rigorous formulation of the problem of blunt body motion in the Venus atmosphere, and attention can be concentrated on revising the CO2 thermodynamic and kinetic properties that must be used in the calculation.The problem of supersonic nonequilibrium flow past a blunt body is solved within the framework of the problem formulation of [4].Notation V body velocity - shock wave standoff - universal gas constant - ratio of frozen specific heats - hRt/m enthalpy per unit mass undisturbed stream P pressure - density - T temperature - m molecular weight - cp specific heat at constant pressure - (X) concentration of component X (number of particles in unit mass) - R body radius of curvature at the stagnation point - j rate of j-th chemical reaction shock layer P V 2 pressure - density - TT temperature - mm molecular weight Translated from Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 5, No. 2, pp. 67–72, March–April, 1970.The author thanks V. P. Stulov for guidance in this study.  相似文献   

15.
Heat transfer characteristics during the vaporization process of a pentane or furan drop in an aqueous glycerol of high viscosity has been studied. With the progress of vaporization, the overall heat transfer coefficient related to the liquid-liquid interfacial area of a two-phase bubble increases monotonically, and influences of initial drop diameter and temperature difference reduce. Some convection or circulation seems to occur in the unvaporized-liquid phase.
Verdampfung einzelner Flüssigkeitstropfen in einer nicht mischbaren Flüssigkeit. Teil II: Der Wärmeübergang
Zusammenfassung In dieser Arbeit wird der Wärmeübergang während der Verdampfung von Pentan- und Furan-Tropfen in einer wässerigen Glyzerinlösung hoher Viskosität untersucht. Mit fortschreitender Verdampfung steigt der Wärmeübergangskoeffizient, bezogen auf die Grenzfläche flüssig-flüssig der zweiphasigen Blase monoton an, wobei Einflüsse des anfänglichen Tropfendurchmessers und der Temperaturdifferenz abnehmen. In der nichtverdampften Flüssigkeitsphase scheint Konvektion oder Zirkulation aufzutreten.

Nomenclature A total surface area of two-phase bubble - AL liquid-liquid interfacial area of two-phase bubble - D equivalent spherical diamter of two-phase bubble - Di initial drop diameter - h average overall heat transfer coefficient related to A - hc average outside heat transfer coefficient related to A - q local outside heat transfer coefficient - hL average overall heat transfer coefficient related to AL - hLc average outside heat transfer coefficient related to AL - kc thermal conductivity of continuous-phase liquid - kdl thermal conductivity of dispersed-phase liquid - kv correction factor of velocity [cf. Eq.(2)] - Nuc =hc D/k - Nuc =hc D/kc - Pec =UD/c - Prc =c/c - Q cumulative heat transferred into two-phase bubble - q local heat flux - r radial distance in spherical co-ordinates - R radius of two-phase bubble - T temperature - TL interface temperature between continuousphase and dispersed-phase component in liquid phase - T bulk temperature - T temperature difference - T nominal temperature difference - U velocity of rise of two-phase bubble - u velocity gradient in r direction [cf. Eq.(9)] - ur velocity component in r direction - u velocity component in direction - V volume of two-phase bubble - Vdl volume of dispersed-phase component in liquid phase - X defined in Eq.(7) - Y defined in Eq.(8) - Z defined in Eq.(12) - c thermal diffusivity of continuous-phase liquid - half opening angle of vapor phase in two-phase bubble - average thickness of dispersed-phase component in liquid phase [cf. Eq.(22)] - angle in spherical co-ordinates - vaporization ratio - time  相似文献   

16.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

17.
The exact solution of the equation of motion of a circular disk accelerated along its axis of symmetry due to an arbitrarily applied force in an otherwise still, incompressible, viscous fluid of infinite extent is obtained. The fluid resistance considered in this paper is the Stokes-flow drag which consists of the added mass effect, steady state drag, and the effect of the history of the motion. The solutions for the velocity and displacement of the circular disk are presented in explicit forms for the cases of constant and impulsive forcing functions. The importance of the effect of the history of the motion is discussed.Nomenclature a radius of the circular disk - b one half of the thickness of the circular disk - C dimensionless form of C 1 - C 1 magnitude of the constant force - D fluid drag force - f(t) externally applied force - F() dimensionaless form of applied force - F 0 initial value of F - g gravitational acceleration - H() Heaviside step function - k magnitude of impulsive force - K dimensionless form of k - M a dimensionless parameter equals to (1+37#x03C0;s/4f) - S displacement of disk - t time - t 1 time of application of impulsive force - u velocity of the disk - V dimensionless velocity - V 0 initial velocity of V - V t terminal velocity - parameter in (13) - parameter in (13) - (t) Dirac delta function - ratio of b/a - () function given in (5) - dynamical viscosity of the fluid - kinematic viscosity of the fluid - f fluid density - s mass density of the circular disk - dimensionless time - i dimensionless form of t i - dummy variable - dummy variable  相似文献   

18.
Thermodynamics is developed for a class of thermo-hypo-elastic materials. It is shown that materials of this class obey the laws of thermodynamics, but are not elastic.

Table of Symbols

Latin Letters A ijkl tensor-valued function of t ij appearing in hypo-elastic constitutive relation - B ijkl another tensor-valued function. See equation (4.2) - B the square of - d ij rate of deformation tensor - d ij deviator of rate of deformation - f, k functions of pressure, p - g, h functions of the invariant - p pressure - q i heat flux vector - s ij stress deviator - ij co-rotational derivative of stress deviator - t time - t 1 t 2 specific values of time - t ij stress tensor - t ij 0 a specific value of stress - T Temperature - T 0 a specific value of temperature - u i velocity - V(t) a material volume as a function of time, t - V 0 a material volume at a reference configuration - W work (W = work done in a deformation—section 5) Sript Letters Specific internal energy - Specific Helmholtz free energy - G Specific Gibbs function Greek Letters an invariant of the stress deviator—see eq. (2.4) - ij kroneker delta - (W = work done in a deformation—section 5) - specific entropy - hypo-elastic potential - hypo-elastic potential - mass density - 0 mass density in a reference configuration - specific volume = 1/ - a function of p - ijkl a constant tensor—see eq. (2.5) - G/ - ij rate of rotation tensor This work is dedicated to Jerald L. Ericksen, without whose influence it would not have been possible  相似文献   

19.
The documentation and control of flow disturbances downstream of various open inlet contractions was the primary focus with which to evaluate a spatial sampling technique. An X-wire probe was rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section. This provided quasi-instantaneous multi-point measurements of the streamwise and azimuthal components of the velocity to investigate the temporal and spatial characteristics of the flowfield downstream of various contractions. The extent to which a particular contraction is effective in controlling ingested flow disturbances was investigated by artificially introducing disturbances upstream of the contractions. Spatial as well as temporal mappings of various quantities are presented for the streamwise and azimuthal components of the velocity. It was found that the control of upstream disturbances is highly dependent on the inlet contraction; for example, reduction of blade passing frequency noise in the ground testing of jet engines should be achieved with the proper choice of inlet configurations.List of symbols K uv correlation coefficient= - P percentage of time that an azimuthal fluctuating velocity derivative dv/d is found - U streamwise velocity component U=U (, t) - V azimuthal or tangential velocity component due to flow and probe rotation V=V (, t) - mean value of streamwise velocity component - U m resultant velocity from and - mean value of azimuthal velocity component induced by rotation - u fluctuating streamwise component of velocity u=u(, t) - v fluctuating azimuthal component of velocity v = v (, t) - u phase-averaged fluctuating streamwise component of velocity u=u(0) - v phase-averaged fluctuating azimuthal component of velocity v=v() - û average of phase-averaged fluctuating streamwise component of velocity (u()) over cases I-1, II-1 and III-1 û = û() - average of phase-averaged fluctuating azimuthal component of velocity (v()) over cases I-1, II-1 and III-1 - u fluctuating streamwise component of velocity corrected for non-uniformity of probe rotation and/or phase-related vibration u = u(0, t) - v fluctuating azimuthal component of velocity corrected for non-uniformity or probe rotation and/or phase-related vibration v=v (, t) - u 2 rms value of corrected fluctuating streamwise component of velocity - rms value of corrected fluctuating azimuthal component of velocity - phase or azimuthal position of X-probe  相似文献   

20.
The plasticization of many biosolids can take place over a fairly broad temperature range. The resulting loss of stiffness is primarily expressed by a drastic drop of G(T) whose magnitude is usually higher than G(T) by one or two orders of magnitude. Both G(T) and G(T) have characteristic properties that can vary widely among biomaterials. Consequently, the tan (T) peak need not be a mark of the transition center and it can be observed at temperatures where different materials have undergone a very different degree of plasticization as judged by the magnitude of G(T). This is demonstrated by computer simulations using typical functions that describe G(T) and G(T) at the glass transition region and with published data on the dynamic mechanical behavior of a variety of biosolids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号