首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Literature lists a number of counter-current chromatography (CCC) models that can predict the retention time and to a certain extent the peak width of a solute eluting from a CCC column. The approach described in this paper distinguishes itself from previous reports by relating all model parameters directly to column dimensions and experimental settings. Most importantly, this model can predict a chromatogram from scratch without resorting to traditional calibration using empirical values. The model validation with experimental results obtained across a range of CCC instruments demonstrated that the solute retention time, peak width, and peak resolution could be predicted within reasonable accuracy. Additionally, the effect of several process parameters, such as mobile phase flow rate, rotational speed of the column or β-value, showed that the model is robust and applicable to a wide range of CCC instruments. Overall, this model proved to be a useful tool for parameter estimation and, most significantly, separation optimisation.  相似文献   

2.
Two well known approaches are considered to analyze the processes of counter-current and dual counter-current chromatography: the longitudinal mixing cell model and the Craig's counter-current distribution model. The cell model represents perfectly mixed, equally sized cells in series. The number of cells characterizes the rates of longitudinal mixing in the stationary and mobile phases. In the eluting counter-current distribution (CCD) model, the CCC process is considered as a continuous form of Craig's counter-current distribution. For a cascade of equilibrium stages theoretical elution profiles of the CCC process by using the CCD and cell model approaches have been compared. It is shown that in general, distribution functions of the CCD and cell models differ. It is established that the distribution of a solute between two solvent phases in the dual CCC process is determined by the extraction factor c, the total number of equilibrium stages n and the position of the sample inlet m by the equation Q(x)=(1-c(m))/(1-c(n+1)) with c=F(2)K(D)/F(1) (K(D), F(1), F(2) and Q(x) are the distribution constant, the phase flow-rates and the portion of solute eluted by the first phase, respectively).  相似文献   

3.
Alkaloids represent a most widespread group of bioactive natural products. Because of their alkalinity and structural diversity, the fractionation and purification of the alkaloids from herbs can often present a number of practical difficulties using the conventional chromatographic techniques. High-speed counter-current chromatography (HSCCC) is a liquid-liquid partition chromatography with a support-free liquid stationary phase, and is gaining more and more popularity as a viable separation technique for bioactive compounds from natural resources. In the present review, focus is placed on the separation of alkaloids by both conventional HSCCC and pH-zone-refining counter-current chromatography (CCC) techniques from herbs. The review presents the separation of over 120 different alkaloid compounds from more than 30 plant species by the conventional HSCCC and pH-zone-refining CCC. Based on the data from the literature, the proper solvent systems for the separation of alkaloids by the conventional HSCCC and pH-zone-refining CCC are also summarized.  相似文献   

4.
Examples of chiral separations in counter-current chromatography (CCC) and centrifugal partition chromatography (CPC) are not numerous, due to the difficulty of finding chiral selectors highly selective in the liquid phase as well as a combination of solvents that does not destroy the selectivity and retains the capacity to elute chiral isomers of interest. New ideas and new chiral selectors generally come from other separation techniques, as will be highlighted in this review.  相似文献   

5.
Recent advances in counter-current chromatography   总被引:4,自引:0,他引:4  
During the past several years, counter-current chromatography (CCC) technology has been advanced to cover a broad spectrum of applications, from large-scale preparative to analytical-scale separations. These advances include liquid-liquid dual CCC, foam CCC and partition of macromolecules with aqueous-aqueous polymer phase systems. For these developments the synchronous coil planet centrifuge scheme has been used, which relies on a relatively simple mechanical design. Future developments in CCC may be focused on the improvement of the more intricate non-synchronous coil planet centrifuge scheme which has a greater potential for the separation of biopolymers and cell particles.  相似文献   

6.
This work describes the application of counter-current chromatography (CCC) as a useful, fast and economic alternative for the isolation and purification of heterocyclic derivatives from lapachol and beta-lapachone, two naturally occurring compounds from Tabebuia species, and nor-beta-lapachone, a synthetic congener of lapachol. The discussed data comprise four examples of purification of synthetic reactions with different solvent systems - the mixture of the oxazole and the imidazole from beta-lapachone; the quinoxaline from nor-beta-lapachone; and the purification of the N-oxides from the quinoxaline and the phenazine from nor-beta-lapachone from their respective not fully reacted substrates by means of aqueous reversed- and normal-phase elution modes and non-aqueous solvent systems. Traditional purification of these reaction products by silica gel column chromatography demanded a large amount of solvent and time and, in some cases, serious degradation of the products occurred, leading to low yield of the reaction. High-speed counter-current chromatography (HSCCC) was used as an alternative to optimize the process and raise the yield of the reactions.  相似文献   

7.
This review focuses on the growing popularity of using counter-current chromatography (CCC), with its liquid stationary phase, as one of the prime methods for isolating compounds from Chinese herbal medicines (CHMs). 198 publications are reviewed covering 108 different plant species from 56 plant families. These describe the isolation of 354 different molecules across a wide range of polarities, chemical classes and molecular weights (in the range 100–1000 Da). The suitability of CCC for the separation of active compounds from CHM, the phase systems used, how CCC has developed in China, compounds isolated, CCC instrumentation, performance, operational issues and innovations, all supported by detailed cross-referencing, are described. It is concluded that CCC is making an increasingly important contribution to the modernisation of Chinese herbal medicines.  相似文献   

8.
Wu S  Yang L  Gao Y  Liu X  Liu F 《Journal of chromatography. A》2008,1180(1-2):99-107
A multi-channel counter-current chromatography (CCC) method has been designed and fabricated for the high-throughput fractionation of natural products without complications sometimes encountered with other conventional chromatographic systems, such as irreversible adsorptive constituent losses and deactivation, tailing of solute peaks and contamination. It has multiple independent CCC channels and each channel connects independent separation column(s) by parallel flow tubes, and thus the multi-channel CCC apparatus can achieve simultaneously two or more independent chromatographic processes. Furthermore, a high-throughput CCC fractionation method for natural products has been developed by a combination of a new three-channel CCC apparatus and conventional parallel chromatographic devices including pumps, sample injectors, effluent detectors and collectors, and its performance has been displayed on the fractionation of ethyl acetate extracts of three natural materials Solidago canadensis, Suillus placidus, and Trichosanthes kirilowii, which are found to be potent cytotoxic to tumor cell lines in the course of screening the antitumor candidates. By combination of biological screening programs and preparative high-performance liquid chromatography (HPLC) purification, 22.8 mg 6 beta-angeloyloxykolavenic acid and 29.4 mg 6 beta-tigloyloxykolavenic acid for S. canadensis, 25.3mg suillin for S. placidus, and 6.8 mg 23,24-dihydrocucurbitacin B for T. Kirilowii as their major cytotoxic principles were isolated from each 1000 mg crude ethyl acetate extract. Their chemical structures were characterized by electrospray ionization mass spectrometry, one- and two-dimensional nuclear magnetic resonance. The overall results indicate the multi-channel CCC is very useful for high-throughput fractionation of natural products for drug discovery in spite of the solvent balancing requirement and the lower resolution of the shorter CCC columns.  相似文献   

9.
Both batch and continuous separations were performed on an industrial liquor using a specially built continuous counter-current extraction centrifuge. Changing the flow regime for different batch separations showed that the elution of components from the respective ends of the coil depends on the flow rates of both upper and lower phases. It was shown that, within the scope of the study, the elution of the components was not affected by the concentration of the injected reaction liquor and more importantly that continuous processing with a counter-current chromatography centrifuge was feasible. This research represents an important step forward in making continuous counter-current chromatography (or true moving bed chromatography) accessible for the pharmaceutical industry.  相似文献   

10.
The gravitational force exerts an important effect on the counter-current chromatography (CCC) and has been used to retain the stationary phase and improve the efficiency in the various CCC separations. This paper deals with the effect of gravitational force on type-J CCC, one of the most popular CCC methods by the mathematical analysis for the first time. The theoretical analyses reveal a close relationship between the effect of gravitational force, the placed orientation of type-J CCC apparatus, and the revolutional speed. Two placed orientations are more suitable for preparative CCC separation: one is common horizontal, and the other upright. Thus, there are three optimum conditions for type-J CCC separation, the first using horizontal apparatus at very low revolutional speed around 10rpm in the gravitational filed, the second by use of upright apparatus at moderate revolutional speed around 100rpm in the three-dimensional complex force field composed of centrifugal and orthogonal gravitational force, and the third employing the apparatus placed at any orientation including horizontal and upright CCC apparatus at high revolutional speed above 300rpm in the centrifugal force field. Therefore, we should consider the effect of gravitation force on CCC at the selection of proper operational conditions according to properties of two immiscible phases, the desired revolutional speed and the parameters of apparatus in order to utilize efficiently the effect of gravitational force. These analyses and results will benefit to improve the efficiency of CCC separation, especially large-scale industrial preparation.  相似文献   

11.
In this work, eight compounds from Phellodendron chinense were separated and purified by pH-zone refining counter-current chromatography and traditional counter-current chromatography coupled with online-storage inner-recycling counter-current chromatography (IRCCC). The pH-zone-refining mode was adopted for separating 2.0 g of crude extract with the solvent system of chloroform–methanol–water (4:3:3, v/v), in which 10 mM hydrochloric acid and 10 mM triethylamine were added in the stationary and mobile phases, respectively. Meanwhile, traditional counter-current chromatography coupled with online-storage IRCCC separation was performed by the solvent system of n-hexane-ethyl acetate-methanol-water (5:5:2:8, v/v). Finally, eight compounds, including six alkaloids as 6-methylpiperidin-2-one( 1 ), isoplatydesmine( 4 ), berlambine( 5 ), epiberberine( 6 ), palmatine( 7 ), berberine( 8 ) and two phenolic acids as ferulic acid( 2 ), isoferulic acid( 3 ), were successfully obtained using these three different CCC modes with the purities over 95.0%.  相似文献   

12.
Peng A  Li R  Hu J  Chen L  Zhao X  Luo H  Ye H  Yuan Y  Wei Y 《Journal of chromatography. A》2008,1200(2):129-135
In this paper, high-speed counter-current chromatography (HSCCC) instruments with different gravitational forces were applied for the separation of bioactive compounds from Triperygium wilfordii Hook.f. The critical parameters including sample concentration, sample volume and flow rate were first optimized on an analytical Mini-DE HSCCC system, and then scaled up to a preparative TBE 300A HSCCC system. Although this scale-up process was performed using different CCC instruments with different centrifuges and gravitational forces, the same resolutions were obtained and the elution time could be predictable. Five diterpenoid compounds and one unknown compound were separated from Triperygium wilfordii Hook.f. by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (HEMW) (3:2:3:2, v/v/v/v). This one-step flow gradient separation produced triptonide (25 mg), isoneotriptophenolide (77 mg), hypolide (83 mg), unknown compound (1 mg), triptophenolide (42 mg), triptonoterpene methyl ether VI (37 mg) from 320 mg crude extract with purities of 98.2%, 96.6%, 98.1%, 95.3%, 95.1%, and 96.5%, respectively. Their purities and structures were identified by high-performance liquid chromatography, mass spectrometry and NMR. This paper demonstrates that analytical CCC plays an important role in optimizing parameters and scale-up process when analytical CCC and preparative CCC are supplied by different manufacturers with different gravitational forces, and the scale-up process from analytical CCC to preparative CCC is still predictable.  相似文献   

13.
Comparing the performance of different counter-current chromatography (CCC) J-type centrifuges has and will always be difficult. This is due to the number of variables such as speed of rotation, swung radius, β-value, column bore, column length that can be chosen during the design of an instrument. This situation is further complicated by the implication that some of these variables are intrinsically linked, such that if one is changed another or others can also change. The chromatographer has no influence on these hardware parameters once the instrument designer has chosen them. However, the chromatographer wants a CCC column that retains the most liquid stationary phase in order to achieve the best separation of the components in a mixture. What matters most is column performance in terms of: sample loading per injection, speed of separation, purity of target and yield of target. The instrument that has the best performance in all these areas is called a “high-performance” CCC system. This paper demonstrates to the modern chromatographer that a “high-performance” CCC instrument has shorter, lower volume columns that are rotated faster to provide quicker separations, even with the same sample loading.  相似文献   

14.
A recent paper by Du et al. [J. Chromatogr. A, 835 (1999) 231] showed a very good correlation between the retention of stationary phase and the square root of mobile phase flow (F(1/2)) for 12 different phase systems in counter-current chromatography. This paper shows there is a relationship between the above retention and the linear velocity of the mobile phase. In this way, Du et al.'s results can be related to the kinematics of the mobile phase flow in the tubing. This will open the door for further engineering analysis of this fluid dynamic phenomenon.  相似文献   

15.
Hu R  Dai X  Xu X  Sun C  Pan Y 《Journal of chromatography. A》2011,1218(36):6085-6091
An on-line column-switching counter-current chromatography (CCC) with solid-phase trapping interphase is presented in this paper. The large volume injection is avoided using solid-phase trapping interphase. Thereby, totally different chemical composition biphasic solvent system can be utilized to enhance system orthogonality. In the present work, a 140 mL-capacity CCC instrument was used in the first dimension, and a parallel three-coil CCC centrifuge (40 mL each coil) was used in the second dimensional separation allowing three injections at the same time. With biphasic solvent system composed of n-hexane: ethyl acetate: methanol: water (1:1:1:1, v/v), five well-separated fractions were obtained in the first dimension. Two fractions were online concentrated and further separated in the second dimension with solvent system composed of methyl tert-butyl ether: acetonitrile: water (2:2:3, v/v), where trifluoroacetic acid (10 mM) was added to the upper organic phase as a retainer and triethylamine (10mM) to the aqueous mobile phase as an eluter. Four hydroxyanthraquinones were successfully separated and purified from Chinese medicinal plant Rheum officinale in only one step.  相似文献   

16.
Experiments were performed to evaluate whether counter-current chromatography (CCC) could function as an alternative purification method to reversed-phase high-performance liquid chromatography (RP-HPLC) and normal-phase supercritical fluid chromatography (SFC). RP-HPLC and SFC are the routine methods currently used in our high-throughput purification (HTP) facility for the purification of high-throughput organic synthesis (HTOS) libraries and medicinal chemistry reaction mixtures. Pre-equilibration of the solvent mixture layers was not mandatory for effective chromatography when hexanes–ethyl acetate–methanol–water (HEMW) solvent mixtures were used. Key to the use of CCC for high-throughput applications is the ability to effectively select a solvent system appropriate to each library member. Pilot-scale CCC elution time was used to estimate a starting solvent ratio and RP-HPLC retention time was then used to adjust solvent ratios within a particular library. It was also found that dimethyl sulfoxide (DMSO) and DMSO–methanol were suitable as sample injection solvents when using the HEMW solvent systems.  相似文献   

17.
Liang J  Yang Z  Cao X  Wu B  Wu S 《Journal of chromatography. A》2011,1218(36):6191-6199
In this work, we have established a new stop-and-go two-dimensional chromatography coupling of counter-current chromatography and liquid chromatography (2D CCC × LC) for the preparative separation of two novel antioxidant flavonoids from the extract of alfalfa (Medicago sativa L.). The CCC column has been used as the first dimension to purify the target flavonoids using a solvent system of isopropanol and 20% sodium chloride aqueous solution (1:1, v/v) with the stop-and-go flow technique, and the LC column packed with macroporous resin has been employed as the second dimension for on-line absorption, desalination and desorption of the targeting effluents purified from the first CCC dimension. As a result, two novel flavonoids, 6,8-dihydroxy-flavone-7-O-β-D-glucuronide (15.3 mg) and 6-methoxy-8-hydroxy-flavone-7-O-β-D-glucuronide (13.7 mg), have been isolated from 126.8 mg of crude sample pre-enriched by macroporous resin column. Their structures have been identified by electrospray ionization mass spectrometry (ESI-MS), electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) and one- and two-dimensional nuclear magnetic resonance spectra (1D and 2D NMR). Further antioxidant assays showed that the first component possess a strong antioxidant activity. All the results demonstrated that the stop-and-go 2D CCC × LC method is very efficient for the separation of flavonoids of alfalfa and it can also be applied to isolate other comprehensive multi-component natural products.  相似文献   

18.
Dual counter-current chromatography (dual CCC)-tandem mass spectrometry (MS/MS) was successfully performed with a newly designed spiral column for dual CCC. The small column capacity required for directly coupling with electrospray MS/MS was accomplished by forming a rectangular spiral groove on a plastic disk and sealing it with a PTFE sheet. This novel dual CCC-MS/MS technique was successfully applied for the rapid determination of methomyl, fenobucarb and carbaryl pesticides in food. A two-phase solvent system of n-hexane-acetonitrile-0.1% formic acid (45:45:10) was suitable for both good dual CCC separation and sufficient ionization of pesticides. Recoveries of these three pesticides from mandarin orange and spinach samples fortified at 0.05 mg/kg were in the range of 93-107% with relative standard deviations of 2.4-3.8%.  相似文献   

19.
Flow velocity profiles of micro counter-current flow of aqueous and butylacetate phases in a microchannel having a width of 100 microm were measured by micro particle image velocimetry. In order to analyze the hydrodynamic characteristics of the counter-current flow, we derived a simple analytical model for the velocity profile. When flow rates of the aqueous and organic phases were 0.2 and 0.1 microl/min, the model agreed well with the experimental results. Predictions about the velocity profile will contribute to estimation of the extraction efficiency in the co-current and counter-current extraction process.  相似文献   

20.
Experiments were performed to demonstrate the potential of counter-current chromatography (CCC) for the isolation of drugs and their metabolites from biological matrices relevant to the metabolism studies of pharmaceutical research. Examples of typical drugs are spiked into biological media ex vivo to provide test samples for analysis. A mass spectrometer hyphenated to a CCC allows for the detection of small molecule drugs within the matrix through selected ion monitoring, and fraction collection can provide material for further structural elucidation by NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号