首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
Fish can be exposed to a complex mixture of chemical contaminants arising from the exposure to wastewater treatment works (WwTWs) effluents. Some of these contaminants are estrogenic and have been associated with feminisation of male fish and the presence of populations containing intersex individuals. However the detection of trace levels (ng/L) of estrogenic chemicals surface waters can be difficult and does not give information on the exposure of aquatic organisms to these contaminants. In this study we assessed whether the analysis of estrogenic substances that bioconcentrate in fish bile can be used to detect the exposure of fish to feminising contaminants in receiving waters and effluents, and thus facilitate their monitoring of these substances in aquatic environments. Estrogenic metabolites in bile were deconjugated using enzymatic hydrolysis and partially purified by solid phase extraction. Steroidal and xenoestrogens were derivatized to their trimethylsilyl ethers and quantified by gas–liquid chromatography–mass spectrometry (GC–MS/MS) using multiple reaction monitoring. The method was validated using spiked bile samples from immature female rainbow trout (Oncorhynchus mykiss) as well as bile from sexually mature roach (Rutilus rutilus) that had been exposed to either tap water or an undiluted estrogenic effluent for 10 days or captured from a river site downstream of a WwTWs effluent discharge. The mean recovery of target analytes from spiked bile was between 86 and 99% and the limit of detection was between 0.1 and 0.7 ng/mL bile for bisphenol A (BPA), 17β-estradiol (E2), estrone (E1) and 17α-ethinylestradiol (EE2), and 11, 60 and 327 ng/mL bile for branched nonyl chain isomeric mixtures of 4-nonylphenolethoxylate (NP1EO), 4-nonylphenol (NP) and 4-nonylphenoldiethoxylate (NP2EO), respectively. All target analytes were detected in bile from roach exposed directly to a WwTWs effluent, with concentrations between 6–13 μg/mL bile for NP, 18–21 μg/mL for NP1EO, 75–135 μg/mL for NP2EO, 0.7–2.5 μg/mL for BPA, E2 and E1 and 17–29 ng/mL for EE2. With the exception of NP2EO, all analytes were detected in at least 2 out of the 5 fish sampled from the River Thames. BPA and NP1EO were detected in all three reference fish held in tap water indicating possible contamination from laboratory plastics. The work shows that analysis of 20–100 μL quantities of bile could be a useful approach in detecting exposure to mixtures of estrogenic contaminants taken up by fish from WwTW effluents and has the potential for monitoring the efficacy of remediation strategies that may be adopted for reduction of these endocrine disrupting chemicals in the aquatic environment.  相似文献   

2.
A simple and sensitive method for the determination of patulin in fruit juice and dried fruit samples was developed using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–mass spectrometry (LC–MS). Patulin was separated within 5 min by high-performance liquid chromatography using a Synergi MAX-RP 80A column and water/acetonitrile (80/20, v/v) as the mobile phase. Electrospray ionization conditions in the negative ion mode were optimized for MS detection of patulin. The pseudo-molecular ion [M−H] was used to detect patulin in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample using a Carboxen 1006 PLOT capillary column as an extraction device. The extracted patulin was readily desorbed from the capillary by passage of the mobile phase, and no carry-over was observed. Using the in-tube SPME LC–MS with SIM method, good linearity of the calibration curve (r = 0.9996) was obtained in the concentration range of 0.5–20 ng/mL using 13C3-patulin as an internal standard, and the detection limit (S/N = 3) of patulin was 23.5 pg/mL. The in-tube SPME method showed >83-fold higher sensitivity than the direct injection method (10 μL injection volume). The within-day and between-day precision (relative standard deviations) were below 0.8% and 5.0% (n = 6), respectively. This method was applied successfully for the analysis of fruit juice and dried fruit samples without interference peaks. The recoveries of patulin spiked into apple juice were >92%, and the relative standard deviations were <4.5%. Patulin was detected at ng/mL levels in various commercial apple juice samples.  相似文献   

3.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

4.
Two rapid, sensitive and quantitative methods for the determination of the cysteine and cystine ratio in complex defined media feedstock using monolithic reversed-phase liquid chromatography (RPLC) and RPLC–MS are presented. Cysteine is pre-derivatised with purified 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT) and separated from other derivatisation products on a narrow-bore 50 mm × 2 mm I.D. monolithic C18 column with UV detection at 355 nm. For reversed-phase LC (RPLC) the separation is carried out isocratically using a mobile phase of 50 mM trichloroacetic acid (TCA) adjusted to pH 2.5 with lithium hydroxide (LiOH) and acetonitrile (83:14) pumped at 1.5 mL/min with an elevated column temperature. For RPLC–MS an ammonium acetate and acetonitrile gradient method was developed with a reduced flow rate of 0.3 mL/min. The treatment of the samples consisted of dividing them into two aliquots, the first aliquot is analysed for cysteine and the second aliquot is analysed for cystine after its quantitative reduction to cysteine using tris(2-carboxyethyl)phosphine (TCEP). Both methods are linear, with R2 > 0.999 for 0.25–500 μM for cysteine and 0.25–250 μM for cystine using the LC–UV method, sensitive, with detection limit of 36 nM for cysteine, and precise, with ≤1.1% RSD for both retention time and peak area (n = 6). Samples (n = 31) of an industry standard and supplied chemically defined media feedstock were analysed, finding cysteine ranging from 1.56 to 2.26 μg/mL and cystine from 1062.02 to 1348.13 μg/mL.  相似文献   

5.
A simple and sensitive automated method for determination of aflatoxins (B1, B2, G1, and G2) in nuts, cereals, dried fruits, and spices was developed consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–mass spectrometry (LC–MS). Aflatoxins were separated within 8 min by high-performance liquid chromatography using a Zorbax Eclipse XDB-C8 column with methanol/acetonitrile (60/40, v/v): 5 mM ammonium formate (45:55) as the mobile phase. Electrospray ionization conditions in the positive ion mode were optimized for MS detection of aflatoxins. The pseudo-molecular ions [M+H]+ were used to detect aflatoxins in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted aflatoxins were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC–MS with SIM method, good linearity of the calibration curve (r > 0.9994) was obtained in the concentration range of 0.05–2.0 ng/mL using aflatoxin M1 as an internal standard, and the detection limits (S/N = 3) of aflatoxins were 2.1–2.8 pg/mL. The in-tube SPME method showed >23-fold higher sensitivity than the direct injection method (10 μL injection volume). The within-day and between-day precision (relative standard deviations) at the concentration of 1 ng/mL aflatoxin mixture were below 3.3% and 7.7% (n = 5), respectively. This method was applied successfully to analysis of food samples without interference peaks. The recoveries of aflatoxins spiked into nuts and cereals were >80%, and the relative standard deviations were <11.2%. Aflatoxins were detected at <10 ng/g in several commercial food samples.  相似文献   

6.
A direct and simple method for analyzing solanesyl esters found in tobacco leaves was developed. Sample preparation was performed by accelerated solvent extractor 200 (ASE200™) using n-hexane followed by evaporating solution in vacuo and dissolving residue with acetone. The separation of analytes was conducted through high-performance liquid chromatography (HPLC) equipped with an SIL-C18/5C™ column and the non-aqueous reversed phase chromatography (NARP) technique using acetone and acetonitrile as the mobile phase with a linear gradient. Atmospheric pressure chemical ionization/mass spectrometer (APCI/MS) in positive mode was used to detect solanesyl esters in the following conditions: capillary voltage 4000 V, corona current 10 μA, drying gas flow 5 mL/min, fragmentor voltage 200 V, nebulizer pressure 60 psi, and vaporizer temperature 500 °C. Each solanesyl ester was identified by the comparison of analyte with synthesized solanesyl esters. Quantification was conducted by selected ion monitoring (SIM) mode in order to detect the specific product ion (613.6 m/z) fragmented from solanesyl ester. The calibration curve was made in the range of 0.1–40 μg/mL with a regression coefficient over 0.999 on almost all solanesyl esters. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.01 to 0.05 μg/mL and from 0.03 to 0.15 μg/mL, respectively, on the SIM mode of MS for quantification. Recovery (%) ranged from about 80 to 120%. The direct quantification using the developed method succeeded in showing a different amount and composition of solanesyl esters among various tobacco leaves.  相似文献   

7.
An ion-pairing reversed-phase liquid chromatography–mass spectrometry (IP-RP-LC–MS) was developed for the determination of nucleotides, nucleosides and their transformation products in Cordyceps. Perfluorinated carboxylic acid, namely pentadecafluorooctanoic acid (PDFOA, 0.25 mM), was used as volatile ion-paring agent and a reversed-phase column (Agilent ZORBAX SB-Aq column) was used for the separation of three nucleotides namely uridine-5′-monophosphate (UMP, 0.638–10.200 μg/mL), adenosine-5′-monophosphate (AMP, 0.24–7.80 μg/mL) and guanosine-5′-monophosphate (GMP, 0.42–13.50 μg/mL), seven nucleosides including adenosine (0.55–8.85 μg/mL), guanosine (0.42–6.75 μg/mL), uridine (0.33–10.50 μg/mL), inosine (0.21–6.60 μg/mL), cytidine (0.48–15.30 μg/mL), thymidine (0.20–6.30 μg/mL) and cordycepin (0.09–1.50 μg/mL), as well as six nucleobases, adenine (0.22–6.90 μg/mL), guanine (0.26–4.20 μg/mL), uracil (0.38–12.15 μg/mL), hypoxanthine (0.13–4.20 μg/mL), cytosine (0.39–12.45 μg/mL) and thymine (0.26–8.25 μg/mL) with 5-chlorocytosine arabinoside as the internal standard. The overall LODs and LOQs were between 0.01–0.16 μg/mL and 0.04–0.41 μg/mL for the 16 analytes, respectively. The contents of 16 investigated compounds in natural and cultured Cordyceps were also determined and compared after validation of the developed IP-RP-LC-MS method. The transformations of nucleotides and nucleosides in Cordyceps were evaluated based on the quantification of the investigated compounds in three extracts, including boiling water extraction (BWE), 24 h ambient temperature water immersion (ATWE) and 56 h ATWE extracts. Two transformation pathways including UMP → uridine → uracil and GMP → guanosine → guanine were proposed in both natural Cordyceps sinensis and cultured Cordyceps militaris. The pathway of AMP → adenosine → inosine → hypoxanthine was proposed in natural C. sinensis, while AMP → adenosine → adenine in cultured C. militaris. However, the transformation of nucleotides and nucleosides was not found in commercial cultured C. sinensis.  相似文献   

8.
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C8MIM][PF6] with 14% TOPO (w/v); donor phase: 4 mL, pH 4.5 KH2PO4 with 2 M Na2SO4; acceptor phase: 25 μL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1–0.4 μg/L, RSD ≤ 5%) and good linear range (1–2000 ng/mL, R2 ≥ 0.999) were obtained for all the analytes. The presence of humic acid (0–25 mg/L dissolved organic carbon) and bovine serum albumin (0–100 μg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2–103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.  相似文献   

9.
A new method for the quantitative analysis of monkey serum propofol, which is widely used as an anaesthetic agent, was developed by utilizing a temperature-responsive polymer of N-isopropylacrylamide (NIPAAm) and butyl methacrylate (BMA) as the stationary phase of HPLC–fluorescence detection. This poly(NIPAAm-co-BMA) copolymer undergoes a reversible phase transition from a hydrophilic to a hydrophobic microstructure when triggered by change in the temperature. Also this chromatographic system is possible to separate the analytes by using only water as a mobile phase. A pretreatment of the serum (80 μL) was only solid-phase extraction, and the recovery rate of propofol and internal standard was more than 77%, respectively. This method covered the calibration range from 0.5 μg/mL to 10 μg/mL and allowed a reproducible quantification of the serum propofol in administrated monkey serum. The intra- and inter-assay relative standard deviations were less than 14.1%. In addition, there was good relationship of the quantification values between the developed method and the widely used reversed-phase HPLC method. Our developed method has proven to be useful for a simple analysis of propofol in clinical practice, because the avoidance of complicated mobile phase preparation was possible, and only temperature changing could regulate the retention time of the analyte. In addition, by using water instead of fossil fuel, it is the ideal analytical method according to green chemistry.  相似文献   

10.
A simple, rapid and sensitive high-performance liquid chromatography (HPLC) method has been developed for the determination of triptolide. Triptolide was separated from skin endogenous and blank matrices on a 5 μm LiChrospher RP-C18 column by a mobile phase of methanol-water (65:35, v/v). The permeation samples were injected directly without pretreatment. The limit of quantitation (LOQ) and detection (LOD) for triptolide in permeation samples were far below (0.01 and 0.005 μg/mL, respectively). The method was linear over the range of 0.1-104.2 μg/mL with r2 = 0.9999. This HPLC assay is promising for measuring in vitro percutaneous penetration of triptolide through mice skins and also can be performed in the triptolide-loaded microemulsions formulation screening.  相似文献   

11.
Liquid–liquid–liquid microextraction (LLLME) with directly suspended droplet in high-performance liquid chromatography (HPLC) has been applied as a new, rapid and easy method for the determination of 3-nitroaniline in environmental water samples. The target compound was extracted from the aqueous sample solution (donor phase, pH 13) into an organic phase and then was back-extracted into a directly suspended droplet of an acidic aqueous solution (acceptor phase, pH 0.3). In this method, without using a microsyringe as supporting device, an aqueous large droplet is freely suspended at the top-center position of an immiscible organic solvent, which is laid over the aqueous sample solution while being agitated. Then, the droplet was withdrawn into the microsyringe and directly was injected into the HPLC system with UV detection at 227 nm. Up to 148-fold enrichment of the analyte could be obtained under the optimal conditions [i.e. donor phase: 0.1 M sodium hydroxide solution (4.5 mL); organic phase: o-xylene/1-octanol (90:10, v/v; 250 μL); acceptor phase: 0.5 M hydrochloric acid and 500 mM 18-crown-6 ether (6 μL); extraction time: 60 s; back-extraction time: 6 min and stirring rate: 600 rpm]. The limit of detection was 1 μg/L (n = 7) and the relative standard deviation (RSD, n = 5) was 4.9 at S/N = 3. The calibration graph was linear in the range of 5–1500 μg/L with r = 0.9983. All experiments were carried out at room temperature (22 ± 0.5 °C).  相似文献   

12.
A simple method for the analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction–gas chromatography–mass spectrometry has been developed. A novel device was designed for direct extraction solid phase microextraction in order to avoid damage to the fiber. The analysis was performed without derivatization for the gas chromatography–mass spectrometry analysis. Selection fiber, extraction temperature, extraction time and pH, were optimized. The method was linear in the range 0.109–1.323 μg/mL for capsaicin and 0.107–1.713 μg/mL for dihydrocapsaicin with correlation coefficient up to r = 0.9970 for both capsaicinoids. The precision of the method was less than 10%. The method was applied to the analysis of 11 varieties of peppers and four pepper sauces. A broad range of capsaicin (55.0–25 459 μg/g) and dihydrocapsaicin (93–1 130 μg/g) was found in the pepper and pepper sauces samples (4.3–717.3 and 1.0–134.8 μg/g), respectively.  相似文献   

13.
Two methods, based on hollow fiber liquid–liquid–liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L 1 and 0.4 μg L 1 (as Hg) with precisions (RSDs (%), c = 5 μg L− 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME–GFAAS and HF-LPME–GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L 1 was obtained. Finally, HF-LLLME–GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99–113%. In order to validate the method, HF-LLLME–GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish muscle, and the determined values were in good agreement with the certified values.  相似文献   

14.
This paper describes a simultaneously performed two-/three-phase hollow-fiber-based liquid-phase microextraction (HF-LPME) method for the determination of aromatic amines with a wide range of pKa (−4.25 to 4.6) and log KOW (0.9–2.8) values in environmental water samples. Analytes including aniline, 4-nitroaniline, 2,4-dinitroaniline and dicloran were extracted from basic aqueous samples (donor phase, DP) into the microliter volume of organic membrane phase impregnated into the pores of the polypropylene hollow fiber wall, then back extracted into the acidified aqueous solution (acceptor phase, AP) filling in the lumen of the hollow fiber. The mass transfer of the analytes from the donor phase through the organic membrane phase into acceptor phase was driven by both the counter-coupled transport of hydrogen ions and the pH gradient. Afterwards, the hollow fiber was eluted with 50 μL methanol to capture the analytes from both the organic membrane and the acceptor phase. Factors relevant to the enrichment factors (EFs) were investigated. Under the optimized condition (DP: 100 mL of 0.1 M NaOH with 2 M Na2SO4; organic phase: di-n-hexyl with 8% trioctylphosphine oxide (TOPO); AP: 10 μL of 8 M HCl; extraction time of 80 min), the obtained EFs were 405–2000, dynamic linear ranges were 5–200 μg/L (R > 0.9976), and limits of detection were 0.5–1.5 μg/L. The presence of humic acid (0–25 mg/L dissolved organic carbon) had no significant effect on the extraction efficiency. The proposed procedure worked very well for real environmental water samples with microgram per liter level of analytes, and good spike recoveries (80–103%) were obtained.  相似文献   

15.
This work describes an arsenic speciation analysis in aqueous effluent from a shale industrial plant using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC–ICP–MS). Arsenic species have been separated through an anion-exchange column and several parameters investigated, such as retention time, pH, flow rate and concentration of the mobile phase (ammonium carbonate), chloride interference and column conditioning time. The best conditions have been found by fixing the pH of the mobile phase at 8.7. Keeping the mobile phase flow rate at 1.5 ml min− 1, arsenic species were separated by varying the concentration of the mobile phase and the time of elution, as follow: 1.5 mmol l− 1 for 10 min, 12 mmol l− 1 for 10 min and 20 mmol l− 1 for 10 min, respectively. Up to 13 As species present in the samples were separated under these conditions and the following species could be identified and quantified: arsenite [As(III)], dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate [As(V)]. The limits of detection of the LC–ICP–MS method were 0.02, 0.06, 0.04 and 0.10 μg l− 1 of As(III), DMA, MMA, and As(V), respectively. The concentration of these species in the samples were from 3.7 to 6.4 μg l− 1, 6.9 to 13.2 μg l− 1, 100 to 142 μg l− 1 and 808 to 1363 μg l− 1 for As(III), DMA, MMA and As(V), respectively. The accuracy, evaluated by recovery tests, varied from 94 to 105% and the precision, evaluated by the relative standard deviation was typically lower than 10%.  相似文献   

16.
A sensitive and precise high performance liquid chromatography (HPLC)-electrochemical detection (ECD) method has been developed for the simultaneous determination of four isoquinoline alkaloids including berberine, jatrorrhizine, coptisine and palmatine in Chinese medicine Coptis chinensis. The typical HPLC analysis was performed on WondaSil® C18-WR column (250 × 4.6 mm, 5 μm) with the mobile phase comprising 40 mM phosphate buffer (pH 7.0)–acetonitrile (40:60, v/v) at the flow rate of 0.8 mL min−1. The electrochemical detection employed a three electrode system with a bare glassy carbon electrode at +1.3 V versus the Ag/AgCl reference electrode. The limits of detection (LODs) of four alkaloids ranged from 0.01 to 0.03 μmol L−1 and the LOD of berberine was 80 times lower than LOD obtained by UV detection. The rat plasma samples were assayed after oral administration of the traditional Chinese medicine Coptis chinensis by the proposed HPLC-ECD method. The recoveries of this method were ranging from 88.0 to 116%, with the relative standard deviation lower than 3.1% for intra-day precision and 5.7% for inter-day precision. These results show that HPLC-ECD is a useful tool for the quality control of herbal medicine Coptis chinensis and also for pharmacokinetic studies.  相似文献   

17.
News stories about the contamination of milk with melamine in China emerged on Sept 11, 2008, and the situation has since become an international health scare. In this work, a novel analytical method based on enrichment and pretreatment of analytes in the milk sample, hollow fiber sorptive extraction and gas chromatography–mass spectrometry has been developed for the rapid analysis of melamine in the dairy products. In the proposed method, melamine in the fresh milk was extracted by zirconia hollow fiber, enriching on zirconia coating of the hollow fiber, and then analyzed by GC–MS. The method validations including linearity, limit of detection, limit of qualification, recoveries at three different concentrations, precision, and repeatability were investigated. It was found that the proposed method provided linear range from 0.001 to 1000 μg/mL (r2 = 0.9997), low detection limit of 0.001 μg/mL, and preferable recoveries at three different concentrations. The obtained results demonstrated that zirconia hollow fiber combined with GC–MS is a simple, rapid and solvent-free method for the analysis of melamine in the dairy products.  相似文献   

18.
Khamanga SM  Walker RB 《Talanta》2011,83(3):1037-1049
An accurate, sensitive and specific high performance liquid chromatography-electrochemical detection (HPLC-ECD) method that was developed and validated for captopril (CPT) is presented. Separation was achieved using a Phenomenex® Luna 5 μm (C18) column and a mobile phase comprised of phosphate buffer (adjusted to pH 3.0): acetonitrile in a ratio of 70:30 (v/v). Detection was accomplished using a full scan multi channel ESA Coulometric detector in the “oxidative-screen” mode with the upstream electrode (E1) set at +600 mV and the downstream (analytical) electrode (E2) set at +950 mV, while the potential of the guard cell was maintained at +1050 mV. The detector gain was set at 300. Experimental design using central composite design (CCD) was used to facilitate method development. Mobile phase pH, molarity and concentration of acetonitrile (ACN) were considered the critical factors to be studied to establish the retention time of CPT and cyclizine (CYC) that was used as the internal standard. Twenty experiments including centre points were undertaken and a quadratic model was derived for the retention time for CPT using the experimental data. The method was validated for linearity, accuracy, precision, limits of quantitation and detection, as per the ICH guidelines. The system was found to produce sharp and well-resolved peaks for CPT and CYC with retention times of 3.08 and 7.56 min, respectively. Linear regression analysis for the calibration curve showed a good linear relationship with a regression coefficient of 0.978 in the concentration range of 2-70 μg/mL. The linear regression equation was y = 0.0131x + 0.0275. The limits of detection (LOQ) and quantitation (LOD) were found to be 2.27 and 0.6 μg/mL, respectively. The method was used to analyze CPT in tablets. The wide range for linearity, accuracy, sensitivity, short retention time and composition of the mobile phase indicated that this method is better for the quantification of CPT than the pharmacopoeial methods.  相似文献   

19.
A method was developed for the speciation analysis of the oxyanions of As(III), As(V), Cr(VI), Mo(VI), Sb(III), Sb(V), Se(IV), Se(VI) and V(V) in leachates from cement-based materials, based on anion-exchange HPLC coupled with ICP-MS. The method was optimized in a two-step multivariate approach: the effect of sample pH and mobile phase composition on resolution, peak symmetry and analysis time was studied. Optimum conditions were then identified for the significant experimental factors by studying their interdependence. A mobile phase composition of 20 mM ammonium nitrate, 50 mM ammonium tartrate and pH 9.5 was found to be a compromise optimum for the separation of the target analytes using isocratic elution. The optimum condition provided separation of the analytes in less than 6 min, at a mobile phase flow rate of 1.0 mL/min. The signal intensities of the analytes were improved by adding 1% methanol to the mobile phase. The limit of detection of the method was in the range 0.2–2.2 μg/L for the various species. The effect of sample constituents was studied using spiked concrete leachates. The method was used to determine the target oxyanionic species in leachates generated from a concrete material in the pH range 3.5–12.4; CrO42−, MoO42− and VO43− were detected in most of the leachates.  相似文献   

20.
Present study developed a new method for the sensitive determination of pyrethroid insecticides with solid phase extraction in combination with high performance liquid chromatography and UV detector. SiO2 microspheres, a new SiO2 based material, was investigated for the enrichment ability and applicability as the solid phase extraction sorbent. Four pyrethroid pesticides such as fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were used as the target analytes. Parameters that maybe influence the extraction efficiency such as the eluent type and its volume, sample flow rate, sample pH, and the sample volume were optimized in detail, and the optimal conditions were as followed: sample volume, 100 mL; concentration of methanol, 30%; acetone volume, 5 mL; sample flow rate, 4.2 mL min−1; sample pH, 7. The experimental results indicated that there was good linearity in the concentration range of 0.1–50 μg L−1 except biphenthrin in the range of 0.05–25 μg L−1. The detection limits for fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were in the range of 0.02–0.08 μg L−1. The intra-day and day to day precisions (RSDs, n = 6) were in the ranges of 2.6–4.4% and 5.3–7.2%, respectively. The method was validated with five real environmental water samples, and all these results proved that proposed method could be used as a good alternative for the routine analysis for such pollutants in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号