首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel liquid–liquid–solid microextraction (LLSME) technique based on porous membrane-protected molecularly imprinted polymer (MIP)-coated silica fiber has been developed. In this technique, a MIP-coated silica fiber was protected with a length of porous polypropylene hollow fiber membrane which was filled with water-immiscible organic phase. Subsequently the whole device was immersed into aqueous sample for extraction. The LLSME technique was a three-phase microextraction approach. The target analytes were firstly extracted from the aqueous sample through a few microliters of organic phase residing in the pores and lumen of the membrane, and were then finally extracted onto the MIP fiber. A terbutylazine MIP-coated silica fiber was adopted as an example to demonstrate the feasibility of the novel LLSME method. The extraction parameters such as the organic solvent, extraction and desorption time were investigated. Comparison of the LLSME technique was made with molecularly imprinted polymer based solid-phase microextraction (MIP-SPME) and hollow fiber membrane-based liquid-phase microextraction (HF-LPME), respectively. The LLSME, integrating the advantages of high selectivity of MIP-SPME and enrichment and sample cleanup capability of the HF-LPME into a single device, is a promising sample preparation method for complex samples. Moreover, the new technique overcomes the problem of disturbance from water when the MIP-SPME fiber was exposed directly to aqueous samples. Applications to analysis of triazine herbicides in sludge water, watermelon, milk and urine samples were evaluated to access the real sample application of the LLSME method by coupling with high-performance liquid chromatography (HPLC). Low limits of detection (0.006–0.02 μg L−1), satisfactory recoveries and good repeatability for real sample (RSD 1.2–9.6%, n = 5) were obtained. The method was demonstrated to be a fast, selective and sensitive pretreatment method for trace analysis of triazines in complex aqueous samples.  相似文献   

2.
In this paper, a novel molecularly imprinted polymer (MIP) coated stir bar with ractopamine as template by glass capillary filling with magnetic core as substrate was prepared reproducibly. The ractopamine MIP coating was homogeneous and porous with the average thickness of 20.6 μm. The extraction apparatus for the stir bar was improved to avoid coating loss. The MIP-coated stir bar showed better extraction capacity and good selectivity than that of non-imprinted polymer (NIP) coated stir bar to ractopamine and its analogues. The extraction capacities of ractopamine, isoxsuprine, clenbuterol and fenoterol for MIP-coated stir bar were 3.3, 3.1, 2.8 and 2.4 times as much as that of the NIP coated stir bar, respectively. The MIP-coated stir bars could be used at least 40 times without apparent damage and kept in dried air for 8 months without reduce of extraction ability. A method for the determination of β2-agonists in complex samples by MIP-coated stir bar sorptive extraction coupled with high-performance liquid chromatography (HPLC) was developed. The linear ranges were 0.5–40 μg/L for ractopamine and 1.0–40 μg/L for isoxsuprine and clenbuterol. The detection limits were within the range of 0.10–0.21 μg/L. The method was successfully applied to the analysis of β2-agonists in spiked pork, liver and feed samples with the recoveries of 83.7–92.3%, 80.5–90.2% and 73.6–86.2%, respectively. The RSDs was within 2.9–8.1%. The method is very suitable for the determination of trace β2-agonists in pork, liver and feed samples.  相似文献   

3.
Cytokinins (CTKs) are a class of growth-regulating hormones involved in various physiological and developmental processes. More novel analytical methods for the accurate identification and quantitative determination of trace CTKs in plants have been desired to better elucidate the roles of CTKs. In this work, a novel method based on monolithic molecularly imprinted solid-phase extraction followed by liquid chromatography–electrospray tandem mass spectrometry (mMI-SPE-LC-MS/MS) was developed for accurate determination of four CTKs in plant samples. The molecularly imprinted polymer monolith was prepared by using kinetin as the template in syringes and exhibited specific recognition ability for the four CTKs in comparison with that of non-imprinted polymer monolith. Several factors affecting the extraction performance of mMI-SPE, including the pH of loading sample solution, the nature and volume of elution solvent, the flow rate of sample loading, and sample volume, were investigated, respectively. Under the optimized conditions, the proposed mMI-SPE-LC-MS/MS method was successfully applied in the selective extraction and determination of four CTKs in plant tissues, and it offers detection limits (S/N?=?3) of 104, 113, 130, and 89 pg/mL and mean recoveries of 85.9%, 79.3%, 73.5%, and 70.1% for kinetin, kinetin glucoside, trans-zeatin, and meta-topolin (mT), respectively, with the corresponding RSDs less than 15%.
Figure
Trace determination of cytokinins in different plant samples by monolithic molecularly imprinted solid-phase extraction and liquid chromatography–mass spectrometry  相似文献   

4.
Li Zhang  Shouzhuo Yao 《Talanta》2010,82(3):984-78
A novel method was developed for the analysis of four β-blockers, namely sotalol, carteolol, bisoprolol, and propranolol, in human urine by coupling carrier-mediated liquid phase microextraction (CM-LPME) to high performance liquid chromatography (HPLC). By adding an appropriate carrier in organic phase, simultaneous extraction and enrichment of hydrophilic (sotalol, carteolol, and bisoprolol) and hydrophobic (propranolol) drugs were achieved. High enrichment factors were obtained by optimizing the compositions of the organic phase, the acceptor solution, the donor solution, the stirring rate, and the extraction time. The linear ranges were from 0.05 to 10.0 mg L−1 for sotalol and carteolol, and from 0.05 to 8.0 mg L−1 for bisoprolol and propranolol. The limits of detection (S/N = 3) were 0.01 mg L−1 for sotalol, carteolol, and bisoprolol, and 0.005 mg L−1 for propranolol. The relative standard deviations were lower than 6%. The developed method exhibited high analyte preconcentration and excellent sample clean-up effects with little solvent consumption and was found to be sensitive and suitable for simultaneous determination of the above four drugs spiked in human urine. Furthermore, the successful analysis of propranolol in real urine specimens revealed that the determination of β-blockers in human urine is feasible using the present method.  相似文献   

5.
Solid-phase extraction (SPE) was combined with headspace solid-phase microextraction (HS-SPME) for the highly effective enrichment of 17 ultra trace organochlorine pesticides in water samples. The target compounds were successfully transferred from water samples to a gas chromatography capillary column by means of four consecutive steps, namely SPE, solvent conversion, HS-SPME, and thermal desorption of the SPME fiber. Parameters, including elution volume and breakthrough volume in the SPE step, temperature in the solvent conversion step, and fiber type, ionic strength, extraction temperature, extraction time, and pH in the SPME step were optimized to improve the performance of the method through either single factor comparative experiment or the orthogonal experimental design approach. After optimization, the method gave high sensitivity with a method detection limit ranging from 0.0018 to 0.027 ng L−1, good repeatability with a relative standard deviation less than 20% (n = 4) and acceptable recovery with a value mostly exceeding 60%. External standard calibration was employed for the quantification, and a wide linear range (from 0.0010 to 60 ng mL−1) with R2 values ranging from 0.9988 to 0.9999 were observed. In the end, the method was successfully applied to the Arctic samples, and the results showed that, among all the organochlorine pesticides, hexachlorocyclohexanes (HCHs) were the most predominant in the Arctic surface water body with sum of their concentrations ranging from 0.262 to 3.156 ng L−1.  相似文献   

6.
Hu Y  Li Y  Liu R  Tan W  Li G 《Talanta》2011,84(2):462-470
Novel magnetic molecularly imprinted polymer (MIP) beads using ractopamine as template for use in extraction was developed by microwave heating initiated suspension polymerization. Microwave heating, as an alternative heating source, significantly accelerate the polymerization process. By incorporating magnetic iron oxide, superparamagnetic composite MIP beads with average diameter of 80 μm were obtained. The imprinted beads were then characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and vibrating sample magnetometer. Highly cross-linked porous surface and good magnetic property were observed. The adsorption isotherm modeling was performed by fitting the data to Freundlich isotherm model. The binding sites measured were 3.24 μmol g−1 and 1.17 μmol g−1 for the magnetic MIP beads and the corresponding non-imprinted magnetic beads, respectively. Cross-selectivity experiments showed the recognition ability of the magnetic MIP beads to analytes is relative to degree of molecular analogy to the template. Finally, this magnetic MIP bead was successfully used for enrichment of ractopamine, isoxsuprine and fenoterol from ultrasonically extracted solution of pork and pig liver followed by high performance chromatography with fluorescence detection. The proposed method presented good linearity and the detection limits was 0.52-1.04 ng mL−1.The recoveries were from 82.0% to 90.0% and from 80.4% to 86.8% for the spiked pork and pig liver, respectively, with the RSDs of 5.8-10.0%. Combination of the specific adsorption property of the MIP material and the magnetic separation provided a powerful analytical tool of simplicity, flexibility, and selectivity.  相似文献   

7.
Novel solid-phase microextraction (SPME) fibres containing methyl, ethyl, butyl acrylate and methacrylate were first prepared by a sol–gel technique and investigated for determination of selected organoarsenic compounds (lewisite, methyldichloroarsine, phenyldichloroarsine, diphenylchloroarsine and triphenylarsine) from water samples. The influence of sorption and desorption temperature and time for extraction efficiency were examined. The best new fibre coatings (methyl acrylate (MA), methyl methacrylate (MMA) and combination of methyl acrylate and methacrylate (MA/MMA)) for analysis of organoarsenic compounds were selected and compared with commercial fibres. The distribution coefficients Kfs were determined for the best novel fibres and for absorption commercial fibres. The highest Kfs value were obtained for MA/MMA and MMA fibres and were respectively 9458 and 6561 for lewisite and 6458 and 5884 for triphenylarsine. The limit of detection and quantification were determined for the three laboratory obtained fibres (MA, MMA and MA/MMA). LODs for tested fibres, at a signal-to-noise of 3, were 0.03–0.3 ng mL−1. LOQs for selected coatings, at signal-to-noise of 10, were 0.1–0.8 ng mL−1. The relative standard deviations (RSD) for all measurements were 4.3–6.5% (n = 9) and relative errors were 2.5–5%. The laboratory obtained fibres were used for environmental analysis of pore water samples from the Baltic Sea.  相似文献   

8.
In this research, a novel strategy was developed to prepare molecularly imprinted polymer (MIP) coated solid-phase microextraction fibers on a large scale with Sudan I as template and stainless steel fibers as substrate. More than 20 fibers could be obtained in one glass tube, and the efficiency and coating repeatability were enhanced remarkably in contrast with the yield of only one fiber in our previous works. The obtained MIP-coated stainless steel fibers were characterized by homogeneous and highly cross-linked coating, good chemical and thermal stabilities, high extraction capacities, and specific selectivities to Sudan I–IV dyes. Based on the systemic optimization of extraction conditions, a simple and cost-effective method based on the coupling of MIP-coated SPME with high-performance liquid chromatography was developed for the fast and selective determination of trace Sudan I–IV dyes in hot chili powder and poultry feed samples. The limits of detection of Sudan I–IV dyes were within 2.5–4.6 ng g?1, and the spiked recoveries were in the range of 86.3–96.3% for hot chili powder sample and 84.6–97.4% for poultry feed sample.  相似文献   

9.
Seven solid phase sorbent materials with reversed-phase, mixed-mode interactions (ion-exchange and reversed-phase), and molecularly imprinted polymers (MIP), namely Oasis HLB, Oasis MAX, Oasis MCX, Bond Elute Plexa, Bond Elute Plexa PAX, Bond Elute Plexa PCX, and SupelMIP sorbents, were investigated. The present study was focused on the retention and elution of pharmaceutically active substances based on several analyte-sorbent interaction properties. Basic drugs, such as β-blockers (i.e., atenolol, pindolol, acebutolol, metoprolol, labetalol, and propranolol) were selected as the model compounds for this study. These compounds are frequently encountered in anti-doping tests. The extraction efficiencies of the individual sorbents were compared based on the recovery of known amounts of the targeted analytes in a metered elution volume (500 μL) in three separate elution fractions. The elution efficiency of the total amount of the target analytes on various sorbents was not appreciably influenced by the volume of eluent required for complete elution. Based on the small matrix effects and clear baseline, SupelMIP was the most suitable sorbent for urine analysis. The relative analyte recoveries of the SPE-HPLC procedure proved satisfactory for the range from 94 % to 105 %, with an RSD ranging from 2 % to 4 %. The regression equations for all of the targeted compounds exhibited excellent linearity (r 2 ?>?0.9991) over the range of 10 to 1000 ng mL–1. The limits of detection and quantification for the selected β-blocker compounds in urine were in the ranges of 0.6 to 2.0 ng mL–1 and 2.0 to 6.7 ng mL–1, respectively.  相似文献   

10.
An ion imprinted silica sorbent was prepared using a sol–gel process for selective extraction of Ni(II) ions from water samples. Bis(dibenzoylmethanto)nickel(II) complex was used as template; phenyltrimethoxysilane and 3-aminopropyltriethoxysilane as functional monomers and tetraethylorthosilicate as reticulating agent. The material was packed in solid-phase extraction (SPE) column. The effect of sampling volume, elution conditions, sample pH and sample flow rate on the extraction of Ni ions from water samples were studied. The relative selectivity coefficients of imprinted sorbent for Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were 23.7, 30.3 and 24.4, times greater than non-imprinted sorbent, respectively. The relative standard deviation of the eight replicate determinations of Ni(II) was 4.2%. The detection limit was 0.9 µg L?1 using flame atomic absorption spectrometry. The developed method was successfully applied to the determination of trace nickel in water samples.  相似文献   

11.
A molecularly imprinted solid-phase extraction (MISPE) method has been developed for the rapid analysis of wheat extracts for ochratoxin A (OTA). Molecularly imprinted polymer (MIP) particles were synthesized from N-phenylacrylamide (PAM) and slurry-packed into a micro-column for selective solid-phase extraction (SPE) of OTA. With water flowing at 0.5 mL min–1, a total binding capacity of 30 ng OTA was determined for the 20 mg of MIP particles. MISPE conditions were optimized using OTA in methanol/acetic acid (99:1 v/v). Nearly 100% binding could be achieved from one 20-L injection of sample containing up to 30 ng of OTA. Pulsed elution (PE) using methanol/triethylamine (99:1 v/v) was good for the quantitative desorption of OTA. The MISPE–PE method, with fluorescence detection at ex=385 nm and em=445 nm, afforded a detection limit of 5.0 ng mL–1 (or 0.1 ng in 20 L of sample injected) for OTA. Recovery of OTA from wheat extracts was 103±3%. Each MISPE–PE analysis required less than 5 min to complete.  相似文献   

12.
A novel ‘ionic liquid-mediated multi-walled carbon nanotube (MWCNT)-poly(dimethylsiloxane) (PDMS)’ hybrid coating was prepared by the covalent functionalization of MWCNTs with hydroxyl-terminated PDMS using the sol–gel technique. The prepared fiber was successfully used for the separation and determination of trace amounts of polycyclic aromatic hydrocarbon compounds (PAHs) in four urine samples using head-space solid-phase microextraction coupled to gas chromatography-flame ionization detection. The proposed fiber has high thermal stability and long durability and it can be used more than 210 times without any significant change in its sorption properties. The effects of important parameters such as the exposure time, sampling temperature, sample ionic strength and stirring rate on the extraction efficiency have been studied and optimized. Under the optimal conditions, the method detection limits (S/N = 3) were in the range of 0.0005–0.004 ng mL?1 and the limits of quantification (S/N = 10) between 0.002 and 0.01 ng mL?1. The relative standard deviations for one fiber (repeatability, n = 5) were 4.9–7.5 % and for the fibers obtained from different batches (reproducibility, n = 3), 6.1–8.9 %. The developed method was successfully applied to determine trace levels of PAHs in real urine samples. The obtained relative recoveries for the spiked samples with 0.05 ng mL?1 of each of the PAH compounds were 89.3–107.2 %.  相似文献   

13.
Surface reversible addition-fragmentation chain transfer (RAFT) polymerization method was firstly applied to the preparation of molecularly imprinted polymer (MIP) coated silicon solid-phase microextraction (SPME) fibers. With Sudan I as template, an ultra-thin MIP coating with about 0.55-μm thickness was obtained with homogeneous structure and controlled composition, due to the controllable radical growing and chain propagation in surface RAFT polymerization. The MIP-coated fibers were found with enhanced selectivity coefficients (3.0–6.5) to Sudan I–IV dyes in contrast with those reported in our previous work. Furthermore, the ultra-thin thickness of MIP coating was helpful to the effective elution of template and fast adsorption/desorption kinetics, so only about 18 min was needed for MIP-coated SPME operation. The detection limits of 21–55 ng L−1 were achieved for four Sudan dyes, when MIP-coated SPME was coupled with liquid chromatography (LC) and mass spectrometry (MS) detection. The MIP-coated SPME–LC–MS/MS method was tested for the monitoring of ultra trace Sudan dyes in spiked chilli tomato sauce and chilli pepper samples, and high enrichment effect, remarkable matrix peaks-removing capability, and consequent high sensitivities were achieved to four Sudan dyes.  相似文献   

14.
High selective molecularly imprinted polymers(MIPs) for tetracycline have been prepared by precipitation polymerization. Effects of monomer and solvent,the ratio of monomer and template and the characterization of the polymer were investigated by frontal chromatography and selectivity experiment.The results clearly indicated that the polymer,which had the highest molecular recognition abilities for tetracycline antibiotics,had been received.  相似文献   

15.
A simple, fast, and sensitive method for determination of 17 β-estradiol (E2) in goat milk samples has been developed by combining selective molecularly imprinted matrix solid-phase dispersion (MIP–MSPD) and liquid chromatography with diode-array detection (DAD). The molecularly imprinted polymer was synthesized by use of 17β-estradiol as template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker monomer, azobisisobutyronitrile as initiator, and acetonitrile as porogen, and was used as selective solid support for matrix solid-phase dispersion. The selected dispersant had high affinity for E2 in the goat milk matrix and the extract obtained was sufficiently clean for direct injection for HPLC analysis without any interferences from the matrix. The proposed MIP–MSPD method was validated for linearity, precision, accuracy, decision limit (CCα) and detection capability (CCβ), in accordance with European Commission Decision 2002/657/EC criteria. Linearity ranged from 0.3–10 μg g?1 (correlation coefficient r 2?>?0.999). Mean recovery of E2 from goat milk samples at different spiked levels was between 89.5 and 92.2%, with RSD values within 1.3–2%. CCα and CCβ values were 0.36 and 0.39 μg g?1, respectively. The developed MIP–MSPD method was successfully applied to direct determination of E2 in goat milk samples.
Figure
Determination of 17β-Estradiol by using a MIP-MSPD method in goat milk sample  相似文献   

16.
Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) has been widely used as a biomarker of oxidative DNA damage. Measurements of 8-OHdG in urinary samples are challenging owing to the low level of 8-OHdG and the complex matrix. In this study, a novel molecularly imprinted polymer (MIP) monolithic column was synthesized with guanosine as a dummy template which was used as the medium for in-tube solid-phase microextraction (SPME). In-tube SPME coupled with HPLC/UV detection for extraction and determination of urinary 8-OHdG was developed. The synthesized MIP monolithic column exhibited high extraction efficiency owing to its greater phase ratio with convective mass transfer and inherent selectivity. The enrichment factor for 8-OHdG was found to be 76 and the limits of detection and quantification of the method for urinary samples were 3.2 nmol/L (signal-to-noise ratio 3) and 11 nmol/L (signal-to-noise ratio 10), respectively. The MIPs selectivity also made the sample preparation procedure and chromatographic separation much easier. The linear range of the proposed method was from 0.010 to 5.30 μmol/L (r = 0.9997), with a relative standard deviation of 1.1–6.8%, and the recovery for spiked urine samples was 84 ± 3%. The newly developed method was successfully applied to determine urinary samples of healthy volunteers, coking plant workers, and cancer patients. The 8-OHdG level in cancer patients was significantly higher than that in healthy people.  相似文献   

17.
In this paper a solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)—venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline—in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL–1 urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.  相似文献   

18.
Zhang Z  Tan W  Hu Y  Li G 《Journal of chromatography. A》2011,1218(28):4275-4283
In this paper, an efficient and sensitive analytical method for the simultaneous determination of three trace sterols including ergosterol, stigmasterol and β-sitosterol in complicated biological samples was developed by gas chromatography-mass spectrometry (GC-MS) coupled with extraction using novel β-sitosterol magnetic molecularly imprinted polymer (mag-MIP) beads. Physical tests suggested that β-sitosterol mag-MIP beads prepared by a rapid microwave synthesis method possessed the porous morphology, narrow size distribution, stable chemical and thermal property. Due to the greatly enlarging surface area and the strong recognition to the target molecules, β-sitosterol mag-MIP beads have a higher enrichment factor for β-sitosterol (~20-fold) and the higher selectivity for β-sitosterol and its analogs than that of β-sitosterol magnetic nonimprinted polymer (mag-NIP) beads. Under the optimum analytical conditions, all the target compounds achieved good chromatographic separation and sensitive detection without matrix interference. It was interesting that three target sterols were actually found in mushroom samples, and stigmasterol and β-sitosterol were actually found in serum and watermelon samples. The recoveries of spiked sample tests were in range of 71.6-88.2% with RSDs of 2.4-10.0% (n=3). This method is reliable and applicable for the simultaneous determination of trace sterols in real biological samples based on the β-sitosterol mag-MIP bead extraction.  相似文献   

19.
β-Blockers and β2-agonists are commonly prescribed for therapeutic treatments and are also administered to livestock, leading to their presence in both environmental and biological samples. Hence, the development of sensitive, rapid, and reliable analytical methods for the determination of β-blockers and β2-agonists in environmental and biological samples is important. In this study, MIL-101(Cr)-NH2&GO-coated SiO2/Fe3O4 magnetic particles were prepared as sorbents for magnetic solid-phase extraction and then combined with high-performance liquid chromatography-tandem mass spectrometry for the analysis of 20 β-blockers and eight β2-agonists. The experimental parameters of magnetic solid-phase extraction were studied in detail, and the optimal conditions were established. Under optimal conditions, the limits of detection were in the range of 0.002–0.007 μg/L with enrichment factors of 20.2–24.9. The developed method was successfully applied for the determination of 20 β-blockers and eight β2-agonists in river water, human urine, and freeze-dried pork liver powder. Bisoprolol and salbutamol were detected at concentrations of 2.78 mg/L in human urine and 11.5 μg/kg in freeze-dried pork liver powder.  相似文献   

20.
《Supramolecular Science》1998,5(3-4):417-421
Polymeric receptors for cholesterol were synthesized by crosslinking β-cyclodextrin (β-CyD) with hexamethylene diisocyanate or toluene 2,4-diisocyanate in dimethyl sulfoxide (DMSO) in the presence of cholesterol as the template. Non-imprinted β-CyD polymers were much poorer in the cholesterol adsorption. When β-CyD was cross-linked by epichlorohydrin in aqueous alkaline solutions (even in the presence of cholesterol), the cholesterol adsorbing activity was nil. Use of DMSO as the cross-linking solvent is necessary for the imprinting, since β-CyD molecules form inclusion complexes with cholesterol in this solvent and thus their mutual conformation in the polymer is regulated appropriately for cholesterol binding. The adsorbed cholesterol was completely removed from the polymers by treating the adducts with ethanol, indicating a strong potential for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号