首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a sample stacking step coupled with microemulsion electrokinetic chromatography (MEEKC) was used to detect and analyze nine aromatic acids (benzoic acid (BA), isophthalic acid (IPA), terephthalic acid (TPA), p-toluic acid (p-TA), 4-carboxylbenzaldehyde (4-CBA), trimesic acid (TSA), trimellitic acid (TMA), o-phthalic acid (OPA), and hemimellitic acid (HMA)) which are common impurities produced during aromatic acid synthesis. First, the presence of both acid and water plugs at the front of the capillary improved the reproducibility in retention time and peak intensity of the tested analytes in the stacking method. Second, the pH and the electrolyte type of acidic plug and sample matrix were found to be the predominant influences on the aromatic acid stacking. The detection limits of these aromatic acids were reduced to the range of 0.00007-0.00032 μg mL−1 by this optimal sample stacking step. This proposed on-line concentration MEEKC method was able to detect trace levels of aromatic acid impurities in commercial aromatic acid products that were not previously possible by the normal MEEKC method. Furthermore, these results in comparison with our previous studies on sample stacking MEEKC method indicated that all acidic species were concentrated by this simple stacking procedure. The sensitivity enhancement, however, was highly dependent on the types of functional groups present in the structures of analytes, and the enhancement was in the order of first the compounds carrying both carboxy and hydroxy groups (e.g. phenolic acid), followed by carboxylic acid compounds (e.g. aromatic acid), and then phenol compounds (e.g. polyphenol).  相似文献   

2.
In this study, separation and determination of nine preservatives ranging from hydrophilic to hydrophobic properties, which are commonly used as additives in various pharmaceutical and cosmetic products, by micellar electrokinetic chromatograpy (MEKC) and microemulsion electrokinetic chromatography (MEEKC) were compared. The effect of temperature, buffer pH, and concentration of surfactant on separation were examined. In MEKC, the separation resolution of preservatives improved markedly by changing the sodium dodecyl sulfate concentration. Temperature and pH of running buffers were used mainly to shorten the magnitude of separation time. However, in order to detect all preservatives in a single run in a MEEKC system, a microemulsion of higher pH was needed. The separation resolution was improved dramatically by changing temperature, and a higher concentration of SDS was necessary for maintaining a stable microemulsion solution, therefore the separation of the nine preservatives in MEEKC took longer than in MEKC. An optimum MEKC method for separation of the nine preservatives was obtained within 9.0 min with a running buffer of pH 9.0 containing 20 mM SDS at 25 degrees C. A separation with baseline resolution was also obtained within 16 min using a microemulsion of pH 9.5 which composed of SDS, 1-butanol, and octane, and a shorter capillary column at 34 degrees C. Finally, the developed MEKC and MEEKC methods determined successfully preservatives in various cosmetic and pharmaceutical products.  相似文献   

3.
A microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect eight food colorants (tartrazine, fast green FCF, brilliant blue FCF, allura red AC, indigo carmine, sunset yellow FCF, new coccine, and carminic acid), which are commonly used as food additives in various food products. The effects of sodium dodecyl sulfate (SDS) surfactant, organic modifier, cosurfactant, and oil were examined in order to optimize the separation. The amount of organic modifier (acetonitrile) and SDS surfactant were determined as apparent influences on the separation resolution while the type of oil and cosurfactant rarely affected the separation selectivity of the eight colorants. A highly efficient MEEKC separation method, where the eight colorants were separated with baseline resolution within 14 min, was achieved by using a microemulsion solution of pH 2.0 containing 3.31% SDS, 0.81% octane, 6.61% 1-butanol, and 10% acetonitrile. This optimal MEEKC method has a higher separation efficiency and similar detection limit when compared to conventional capillary electrophoresis (CE) method. Furthermore, a sample pretreatment is rarely needed when this MEEKC technique is used to analyze colorants in food products, whereas a suitable sample pretreatment (for example solid-phase extraction) has to be employed prior to CE separation in order to eliminate matrix interferences resulting from the constituents of the food sample.  相似文献   

4.
Yang X  Xia Y  Tao C  Liao Y  Zuo Y  Liu H 《Electrophoresis》2007,28(11):1744-1751
An investigation of the basic factors which govern the microemulsion EKC (MEEKC) and MEKC for the separation of four benzoylurea (BU) insecticides and their four analogs was carried out. In MEEKC, the separation of eight BU compounds was optimized by changing the microemulsion composition, such as concentration of SDS, octane, n-butanol, and isopropanol percentages, as well as capillary temperature. Separation optimization was also carried out for MEKC, showing that ACN and a high level of another additive gamma-CD were needed to achieve effective separation of these analytes. Although separation with baseline resolution was achieved by either MEEKC or MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC. In addition, analytical time in MEEKC was longer than that in MEKC, but in view of theoretical plate numbers, detection limits, and reproducibility, both methods were effective for the analysis of BU insecticides and their analogs.  相似文献   

5.
In this study, microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) were compared for their abilities to separate and detect thirteen phenolic compounds (syringic acid, p-coumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), and two other ingredients (caffeine and theophylline) in teas and grapes. Separation of phenolic compounds was improved by changing the SDS concentration for MEEKC, but the SDS concentration rarely affected the resolution for MEKC. Organic modifier (acetonitrile or methanol) was found to markedly influence the resolution and selectivity for both MEEKC and MEKC systems. In addition, a higher voltage and a higher column temperature improved the separation efficiency without any noticeable reduction in resolution for MEEKC whereas they caused a poor resolution for the MEKC system. Although separations with baseline resolution were achieved by the optimized MEEKC and MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC.  相似文献   

6.
Separation and determination of water- and fat-soluble vitamins by micellar (MEKC) and microemulsion electrokinetic chromatography (MEEKC) are compared. MEKC is only useful in the quantitative analysis of water-soluble vitamins when sodium dodecylsulfate (SDS) is used as the surfactant. However, the separation of mixtures containing water- and fat-soluble vitamins is only achieved by MEEKC using a microemulsion prepared by mixing SDS as the surfactant, butanol as the co-surfactant, octane as the non-polar modifier and propanol as the second co-surfactant. The injection time and the solvent used for the dilution of samples have a significant effect on the analysis of lypophilic compounds. The most reproducible results in the analysis of fat-soluble vitamins are obtained by using the same microemulsion electrolyte as the solvent for samples and an injection time of 10 s.  相似文献   

7.
Huang HY  Lien WC  Huang IY 《Electrophoresis》2006,27(16):3202-3209
In this study, anion-selective exhaustive injection-sweeping (ASEI-sweeping) technique, which is a selective on-line sample concentration technique, was first proposed in microemulsion electrokinetic chromatography (MEEKC) for analyses of eight acidic phenolic compounds. In contrast to a capillary that is typically filled with nonmicellar background solution in conventional ASEI-sweeping MEKC method, in the proposed ASEI-sweeping MEEKC method, a capillary is filled with a low pH microemulsion solution (pH 2.0), and then with a short acid plug (pH 2.0, 1.9 cm) before field-amplified sample injection. This proposed design has two functions. First, the microemulsion solution that is present at the front of capillary column is able to avoid phase separation of microemulsion solution during MEEKC separation. Second, the presence of the short acid plug would effectively limit the partition behavior of acid analytes with the oil droplets in the microemulsion during field-amplified sample injection; otherwise, the stacking effect of acid analytes would be markedly reduced. This optimal ASEI-sweeping MEEKC method afforded about 96,000-fold to 238,000-fold increases in detection sensitivity in terms of peak areas without any separation efficiency loss when compared to normal MEEKC separation. Furthermore, trace levels (about 3 ng/g) of gallic acid and catechin in foods were also detected successfully by the proposed ASEI-sweeping MEEKC technique.  相似文献   

8.
Recent applications of microemulsion electrokinetic chromatography   总被引:1,自引:0,他引:1  
Huie CW 《Electrophoresis》2006,27(1):60-75
Compared to MEKC, the presence of a water-immiscible oil phase in the microemulsion droplets of microemulsion EKC (MEEKC) gives rise to some special properties, such as enhanced solubilization capacity and enlarged migration window, which could allow for the improved separation of various hydrophobic and hydrophilic compounds, with reduced sample pretreatment steps, unique selectivities and/or higher efficiencies. Typically, stable and optically clear oil-in-water microemulsions containing a surfactant (SDS), oil (octane or heptane), and cosurfactant (1-butanol) in phosphate buffer are employed as separation media in conventional MEEKC. However, in recent years, the applicability of reverse MEEKC (water-in-oil microemulsions) has also been demonstrated, such as for the enhanced separation of highly hydrophobic substances. Also, during the past few years, the development and application of MEEKC for the separation of chiral molecules has been expanded, based on the use of enantioselective microemulsions that contained a chiral surfactant or chiral alcohol. On the other hand, the application of MEEKC for the characterization of the lipophilicity of chemical substances remains an active and important area of research, such as the use of multiplex MEEKC for the high-throughput determination of partition coefficients (log P values) of pharmaceutical compounds. In this review, recent applications of MEEKC (covering the period from 2003 to 2005) are reported. Emphases are placed on the discussion of MEEKC in the separation of chiral molecules and highly hydrophobic substances, as well as in the determination of partition coefficients, followed by a survey of recent applications of MEEKC in the analysis of pharmaceuticals, cosmetics and health-care products, biological and environmental compounds, plant materials, and foods.  相似文献   

9.
Cao J  Chen J  Yi L  Li P  Qi LW 《Electrophoresis》2008,29(11):2310-2320
Oil-in-water (O/W) and water-in-oil (W/O) MEEKC were compared for their abilities to separate and detect eight phenolic acids and five diterpenoids in Radix et Rhizoma Salviae Miltiorrhizae (RRSM). The effects of oil type and concentration, organic modifier, SDS, and buffer concentration on separation were examined in order to optimize the two methods. Oil contents and organic modifier were found to markedly influence the separation selectivity for both O/W and W/O systems. SDS concentration rarely affected separation resolution for O/W MEEKC, and separation of eight phenolic acids and five diterpenoids could be improved by changing the buffer concentration for W/O MEEKC. A highly efficient O/W MEEKC separation method, where the 13 compounds were separated with baseline resolution, was achieved by using a microemulsion solution of pH 8.0 containing 0.6% cyclohexane, 3.0% SDS, 6.0% 1-butanol, and 3.0% ACN. The W/O MEEKC was unable to resolve all the components. In addition, the analytic time in O/W MEEKC was shorter than that in W/O MEEKC. Finally, the developed O/W MEEKC method was successfully applied to determine analytic compounds in RRSM samples.  相似文献   

10.
A cyclodextrin-modified microemulsion electrokinetic chromatography method employing head column field-amplified sample stacking was developed for the analysis of arachidonic acid metabolites of the lipoxygenase pathways. The influence of the concentration of boric acid, the surfactant sodium dodecyl sulfate, the co-surfactant 1-butanol and the oil phase octane as well as the pH of the background electrolyte, the separation voltage and the separation temperature was studied. The optimized microemulsion consisting of 20 mM boric acid buffer, pH 9.0, 3.0 % (m/v) sodium dodecyl sulfate, 0.5 % (v/v) octane, 5.0 % (v/v) 1-butanol and 15 mM α-cyclodextrin enabled the separation of 20-hydroxy-leukotriene B4, leukotriene B4, 6-trans-leukotriene B4, 6-trans-12-epi-leukotriene B4, 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 12(S)-hydroxy-5,8,14-cis-10-trans-eicosatetraenoic acid, 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid as well as the internal standard prostaglandin B1 in <10 min employing a separation voltage of 17.5 kV at a temperature of 23 °C. A matrix peak from solid-phase extraction sample workup co-migrated with 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid affecting peak integration. The addition of 5 % (v/v) 2-propanol to the microemulsion resulted in the separation of this eicosatetraenoic acid and the matrix components at the expense of analysis time and peak resolution between the diastereomers 6-trans-leukotriene B4 and 6-trans-12-epi-leukotriene B4. In summary, the MEEKC method appeared to be especially suitable for the more polar arachidonic acid metabolites.  相似文献   

11.
A novel microemulsion based on sodium bis(2-ethylhexyl) sulfosuccinate (AOT) was developed for the simultaneous determination of natural and synthetic estrogens by microemulsion EKC (MEEKC). The microemulsion system consisted of 1.4% w/w AOT, 1.0% w/w octane, 7.0% w/w 1-butanol and 90.6% w/w 20 mM sodium salt of 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid (CAPSO) and 10 mM phosphate buffer at pH 12.5. A baseline resolution in the separation of estrone, 17beta-estradiol, estriol, estradiol 17-hemisuccinate, etinilestradiol, estradiol 3-benzoate, and estradiol 17-valerate was achieved in comparison to the traditional MEEKC system with SDS in less than 15 min. The optimized electrophoretic conditions included the use of an uncoated-silica capillary of 60 cm of total length and 75 microm id, an applied voltage of 25 kV, a temperature of 25 degrees C and 214 UV-detection. Parameters of validation such as specificity, linearity, accuracy, LOD, LOQ and robustness were evaluated according to international guidelines. Due to its simplicity, accuracy, and reliability, the proposed method can be an advantageous alternative to the traditional methodologies for the analysis of natural and synthetic estrogens in different pharmaceutical forms.  相似文献   

12.
微乳液毛细管电动色谱研究   总被引:2,自引:0,他引:2  
傅小芸  吕建德  竺安 《化学学报》1997,55(5):503-507
本文研究了两组混合样的微乳液毛细管电动色谱(MEEKC)分离, 较系统地研究了微乳液的内相, 助表面活性剂及其浓度对电动分离的迁移时间、柱效及时间窗的影响, 并与胶束毛细管电动色谱(MEKC)分离进行了比较, 选用由80mmol/L正辛烷-120mmol/L十二烷基硫酸钠-900mmol/L正丁醇-10mmol/L硼砂组成的微乳液, 样品组分电动色谱迁移时间的RSD<0.8%, 峰面积RSD<3.0%.  相似文献   

13.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

14.
Rapid MELC and MEEKC methods were developed for paracetamol suppository assay. MELC methods for paracetamol analysis and for separation of paracetamol and its impurities were previously reported. In this study, further development of MEEKC methods and a MELC method using anionic and cationic microemulsions gave excellent validation results for paracetamol content in suppositories. SDS Microemulsion instability resulted in poor reproducibility for impurity separations using gradient elution. A novel isocratic CTAB MELC method achieved reproducible separation of paracetamol and its impurities at 0.1% levels. MEEKC methods using SDS and CTAB microemulsions resolved all of the impurities however detection at 0.1% levels was not possible. These methods gave significant benefits in terms of reduced sample pre-treatment requirements. CTAB microemulsions had greater solubilising power than their SDS equivalent and were more stable due to their longer alkyl chain length.  相似文献   

15.
Micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) are two kinds of electrokinetic capillary chromatography (EKC), which are characterized of high solubilization capacity and separation efficiency. In our previous work, some polar organic compounds and hydrophobic neutral compounds were separated successfully by EKC1-3. In this paper, these methods were used for separating six pyridoncarboylxic acid derivatives with similar structures. T…  相似文献   

16.
A new hexane-in-water microemulsion was investigated as buffer in microemulsion EKC (MEEKC). At difference with other microemulsions, the addition of cosurfactant was not necessary to stabilize the microemulsion. The proposed microemulsion was successfully used to achieve electrophoretic separation of seven antibiotics including nitroimidazoles, cephapirin and tetracyclines. Selectivity and separation efficiency achieved in MEEKC were compared with MEKC. MEEKC technique proved to be more efficient than MEKC for performing the separation of the analytes and the presence of microemulsions was found to be critical to achieve the separation of tetracyclines. The proposed microemulsion also points out that solvents with high volatility, such as hexane, can be stabilized and used as a microemulsion of SDS.  相似文献   

17.
The migration behaviour of isoquinoline, quinoline, and methyl derivatives of quinoline in different capillary electrophoretic modes has been systematically investigated. Optimised separation conditions were established by varying the key parameters (solvent, pH, temperature, surfactant concentration, core phase) for aqueous and non‐aqueous capillary zone electrophoresis (NACE), micellar electrokinetic chromatography (MEKC) with anionic or non‐ionic micelles (SDS, Brij 35), and microemulsion electrokinetic chromatography (MEEKC) with charged or uncharged microemulsion droplets. A separation of all quinolines could be achieved by MEEKC with charged droplets, by MEKC or by formamide‐based NACE. Comparing the separations with respect to separation selectivity, substantial changes in migration order could be observed between the different techniques. Regarding separation efficiency, the number of theoretical plates and limits of detection (LOD) have been compared. The best LODs were achieved using SDS as surfactant in MEKC, followed by MEEKC.  相似文献   

18.
Microemulsion electrokinetic capillary chromatography (MEEKC) is a capillary electrophoresis technique in which neutral and ionized species can be resolved according to their partitioning into moving oil droplets present in the operating buffer. In this report, we present for the first time the application of MEEKC in the analysis of glycosaminoglycans. An efficient method for the separation of the variously sulfated delta-disaccharides obtained following digestion of chondroitin and dermatan sulfates with chondro/ dermato lyases and derivatization with 2-aminoacridone is described. Nonsulfated, mono-, di-, and trisulfated delta-disaccharides were completely separated using the microemulsion octane/butan-1-ol/Sodium dodecyl sulfate (SDS) in 10 mM borate buffer, pH 9.3, at 25 kV. Agreement of the obtained disaccharide composition with literature values showed that MEEKC can be used for the analysis of glycosaminoglycans.  相似文献   

19.
Microemulsion electrokinetic chromatography (MEEKC) coupled with a diode-array detector was developed for the simultaneous analysis of natural steroidal compounds, withanolides including withaferin A, withacnistin and iochromolide. Optimal resolution was obtained with a microemulsion consisting of 70 mM octane, 800 mM 1-butanol, 100 mM sodium dodecyl sulfate (SDS), and 10 mM phosphate-borate buffer (pH 7) using a fused-silica capillary at 25 kV and 40 degrees C. Since this technique is not compatible with mass spectrometry detection, a capillary electrochromatographic method was developed to separate the investigated withanolides. The effects of mobile phase composition and pH were systematically investigated. Complete separation was obtained with a capillary electrochromatography (CEC) Hypersil C18 bonded silica column (packed length, 25 cmx100 microm ID and 375 microm OD), packed with 3 microm particles. The mobile phase consisted of formic acid-ammonia, pH 8 / acetonitrile (40/60 v/v); the voltage was set at 25 kV and the temperature at 20 degrees C. Under these conditions, resolution of these closely related compounds, including the critical pair withacnistin and iochromolide, was achieved in less than 5 min. The separations by MEEKC and CEC were compared with that obtained by reversed-phase liquid chromatography and showed similar retention order, indicating the analogy of the retention mechanism of these techniques. To further improve specificity and sensitivity, the developed CEC method was interfaced with electrospray ionization mass spectrometry using a Teflon connection between the CEC column and a void fused-silica capillary. Finally, the described methods were applied to the qualitative analysis of withanolides in Iochroma gesnerioides plant extract.  相似文献   

20.
Based on the investigation of the effect of microemulsion charge on the chiral separation, a new chiral separation method with MEEKC employing neutral microemulsion was established. The method used a microemulsion containing 3.0% (w/v) neutral surfactant Tween 20 and 0.8% (w/v, 30 mM) dibutyl l ‐tartrate in 40 mM sodium tetraborate buffer to separate the enantiomers of β‐blockers. The effect of major parameters on the chiral separation was investigated. The applied voltage had little effect on the resolution, but the chiral separation could be improved by suppressing the EOF. Nine racemic β‐blockers obtained relatively good enantioseparation after appropriate concentrations of tetradecyl trimethyl ammonium bromide were added into the microemulsion to suppress the EOF. These results were explained based on the analysis of the separation mechanism of the method and deduced separation equations. The resolution equation of the method was further elucidated. It was found that the fourth term in the resolution equation, an additional term compared to the conventional resolution equation for column chromatography, represents the ratio of the relative movement distance between the analyte and microemulsion droplets relative to the effective capillary length. It can be regarded as a correction for the effective capillary length. These findings are significant for the development of the theory of MEEKC and the development of new chiral MEEKC method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号