首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiplex electrochemical detection of two DNA target sequences in one sample using enzyme-functionalized Au nanoparticles (AuNPs) as catalytic labels for was proposed. This DNA sensor was fabricated using a “sandwich” detection strategy, involving two kinds of capture probes DNA immobilized on glassy carbon electrode (GCE), and hybridization with target DNA sequences, which further hybridized with the reporter DNA loaded on the AuNPs. The AuNP contained two kinds of DNA sequences, one was complementary to the target DNA, while the other was noncomplementary to the target. The noncomplementary sequences were linked with horseradish peroxidase (HRP) and alkaline phosphatase (ALP), respectively. Enhanced detection sensitivity was obtained where the AuNPs carriers increased the amount of enzyme molecules per hybridization. Electrochemical signals were generated from the enzymatic products produced from the substrates catalyzed by HRP and ALP. Under optimal conditions, a 33-mer sequence could be quantified over the ranges from 1.5 × 10−13 to 5.0 × 10−12 M with a detection limit of 1.0 × 10−13 M using HRP-AuNP as labels, and a 33-mer sequence could be quantified over the ranges from 4.5 × 10−11 M to 1.0 × 10−9 M with a detection limit of 1.2 × 10−11 M using ALP-AuNP as labels.  相似文献   

2.
The stereospecific binding of monoclonal antibody (mAb) 8E11 to anti-benzo(a)pyrene diol epoxide (BPDE)-dG adducts in single nucleoside, long oligonucleotide, and genomic DNA were quantitatively evaluated using noncompetitive and competitive capillary electrophoresis (CE) immunoassays. Two single-stranded TMR-BPDE-90mers containing a single anti-BPDE-dG adduct with defined stereochemistry and a fluorescent label at 5′-end were used as fluorescent probes for competitive CE immunoassay. To quantitatively evaluate the binding affinity through competitive CE immunoassays, a series of equations were derived according to the binding stoichiometry. The binding of mAb 8E11 to trans-(+)-anti-BPDE-dG displays strongest affinity (Kb: 3.57 × 108 M−1) among all four investigated anti-BPDE-dG mononucleoside adducts, and the cis-(−)-anti-BPDE-dG displays lowest affinity (Kb: 1.14 ×107 M−1). The binding of monoclonal antibody (mAb) 8E11 to BPDE-dG adducts in long DNA (90mer) preferentially forms the complex with a stoichiometry of 1:1, and that mAb 8E11 displays a slightly higher affinity with trans-(+)-anti-BPDE-90mers (Kb: 6.36 ± 0.54 × 108 M−1) than trans-(−)-anti-BPDE-90mers (Kb: 4.52 ± 0.52 × 108 M−1). The mAb 8E11 also displays high affinity with BPDE-dG adducts in genomic DNA (Kb: 3.74 × 108 M−1), indicating its promising applications for sensitive immuno-detection of BPDE-DNA adducts in genomic DNA.  相似文献   

3.
In this work, novel mesoporous silica hollow spheres (MSHS) were chosen as an immobilization matrix, to construct a mediator-free third-generation HRP biosensor. UV-vis spectroscopy revealed that horseradish peroxidase (HRP) entrapped in MSHS could retain its native structure. FTIR spectroscopy and nitrogen adsorption-desorption isotherms indicated that HRP are intercalated into the mesopores. The direct electron transfer of HRP entrapped in MSHS was observed. A pair of stable and well-defined redox peaks of HRP with a formal potential of about −0.150 V (vs. Ag/AgCl) in 0.1 M pH 7.0 phosphate-buffered solution (PBS) were obtained. The biosensor exhibited a fast amperometric response to H2O2 with a linear range of 3.9 × 10−6 to 1.4 × 10−4 M (R = 0.997, N = 20). The detection limit was 1.2 × 10−6 M based S/N = 3.  相似文献   

4.
Zheng L  Xiong L  Zheng D  Li Y  Liu Q  Han K  Liu W  Tao K  Yang S  Xia J 《Talanta》2011,85(1):43-48
In this paper, a polydopamine (PDA) film is electropolymerized on the surface of bilayer lipid membrane (BLM) which is immobilized with horseradish peroxidase (HRP). The coverage of the PDA film on HRP/BLM electrode is monitored by electrochemical impedance spectroscopy (EIS). The electrocatalytic reduction of H2O2 at the PDA/HRP/BLM electrode is studied by means of cyclic voltammetry (CV). The biosensor has a fast response to H2O2 of less than 5 s and an excellent linear relationship is obtained in the concentration range from 2.5 × 10−7 to 3.1 × 10−3 mol L−1, with a detection limit of 1.0 × 10−7 mol L−1 (S/N = 3). The response current of BLM/HRP/PDA biosensor retains 84% of its original response after being stored in 0.1 mol L−1 pH 7.0 PBS at 4 °C for 3 weeks. The selectivity, repeatability, and storage stability of PDA/HRP/BLM biosensor are greatly enhanced by the coverage of polydopamine film on BLM.  相似文献   

5.
Enzyme-linked immunosorbent assay (ELISA) methods based on natural enzyme-labeled probes have been applied in the immunoassays, but most have some inevitable limitations (e.g. harsh preparation, purification and storage) and are unsuitable for routine use. Herein we synthesized a new class of irregular-shaped platinum nanoparticles (ISPtNP) with a mean length of 7.0 nm and a narrowing width from 2.0 to 5.0 nm along the longitudinal axes, which were utilized as peroxidase-like mimics for the development of colorimetric immunoassays. Compared with bioactive horseradish peroxidase (HRP), the synthesized ISPtNP exhibited a low Km value (~0.12 mM) and a high Kcat value (~2.27 × 104 s−1) for 3,3′,5,5′-tetramethylbenzidine (TMB) with strong thermal stability and pH tolerance. The catalytic mechanism of the ISPtNP toward TMB/H2O2 was for the first time discussed and deliberated in this work. Based on a sandwich-type assay format, two types of colorimetric immunoassay protocols were designed and developed for the detection of rabbit IgG (RIgG, as a model) by using the synthesized ISPtNP and conventional HRP as the labeling of detection antibodies, respectively. Similar detection limits (LODs) of 2.5 ng mL−1 vs. 1.0 ng mL−1 were obtained toward RIgG with the ISPtNP labeling compared to HRP format. Intra- and inter-assay coefficients of variation were less than 13%. Importantly, the ISPtNP-based assay system could be suitable for use in a mass production of miniaturized lab-on-a-chip devices and open new opportunities for protein diagnostics and biosecurity.  相似文献   

6.
Xiaofei Hu  Wenrui Jin 《Talanta》2010,80(5):1737-18828
A new electrochemiluminescence (ECL) DNA assay is developed using quantum dots (QDs) as DNA labels. When nanoporous gold leaf (NPGL) electrodes are used, sensitivity of the ECL assay is remarkably increased due to ultra-thin nanopores. In this assay, target DNA (t-DNA) is hybridized with capture DNA (c-DNA) bound on the NPGL electrode, which is fabricated by conjugating amino-modified c-DNA to thioglycolic acid (TGA) modified at the activated NPGL electrode. Following that, amino-modified probe DNA is hybridized with the t-DNA, yielding sandwich hybrids on the NPGL electrode. Then, mercaptopropionic acid-capped CdTe QDs are labeled to the amino group end of the sandwich hybrids. Finally, in the presence of S2O82− as coreactant, ECL emission of the QD-labeled DNA hybrids on the NPGL electrode is measured by scanning the potential from 0 to −2 V to record the curve of ECL intensity versus potential. The maximum ECL intensity (Im,ECL) on the curve is proportional to t-DNA concentration with a linear range of 5 × 10−15 to 1 × 10−11 mol/L. The ECL DNA assay can be used to determine DNA corresponding to mRNA in cell extracts in this study.  相似文献   

7.
Yang Y  Wang Z  Yang M  Li J  Zheng F  Shen G  Yu R 《Analytica chimica acta》2007,584(2):268-274
A novel and sensitive electrochemical DNA biosensor based on nanoparticles ZrO2 and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is described. The MWNTs/nano ZrO2/chitosan-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides were immobilized to the GCE. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using electroactive daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics increased DNA attachment quantity and complementary DNA detection sensitivity. The response signal increases linearly with the increase of the logarithm of the target DNA concentration in the range of 1.49 × 10−10 to 9.32 × 10−8 mol L−1 with the detection limit of 7.5 × 10−11 mol L−1 (S/N = 3). The linear regression equation is I = 32.62 + 3.037 log CDNA (mol L−1) with a correlation coefficient value of 0.9842. This is the first application of carbon nanotubes combined with nano ZrO2 to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.  相似文献   

8.
Mathebe NG  Morrin A  Iwuoha EI 《Talanta》2004,64(1):115-120
An amperometric biosensor was prepared by in situ deposition of horseradish peroxidase (HRP) enzyme on a polyaniline (PANI)-doped platinum disk electrode. The PANI film was electrochemically deposited on the electrode at 100 mV s−1/Ag-AgCl. Cyclic voltammetric characterization of the PANI film in 1 M HCl showed two distinct redox peaks, which prove that the PANI film was electroactive and exhibited fast reversible electrochemistry. The surface concentration and film thickness of the adsorbed electroactive species was estimated to be 1.85×10−7 mol cm−2 and approximately 16 nm, respectively. HRP was electrostatically immobilized onto the surface of the PANI film, and voltammetry was used to monitor the electrocatalytic reduction of hydrogen peroxide under diffusion-controlled conditions. Linear responses over the concentration range 2.5×10−4 to 5×10−3 M were observed. Spectroelectrochemistry was used to monitor the changes in UV-vis properties of HRP, before and after the catalysis of H2O2. The biosensor surface morphology was characterized by scanning electron microscopy (SEM) using PANI-doped screen-printed carbon electrodes (SPCEs) in the presence and absence of (i) peroxidase and (ii) peroxide. The SEM images showed clear modifications of the conducting film surface structure when doped with HRP, as well as the effect of hydrogen peroxide on the morphology of biosensor.  相似文献   

9.
Feng Li 《Talanta》2009,77(4):1304-1308
A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide-incorporated sol-gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0 × 10−7 to 4.6 × 10−5 mol l−1 with a detection limit of 8.1 × 10−8 mol l−1. The apparent Michaelis-Menten constant was determined to be 45.18 μmol l−1. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.  相似文献   

10.
Uric acid (UA) is determined using the UV-vis molecular absorption properties of peroxidase (HRP). The method as a whole involves UA oxidation in the presence of uricase (UOx), giving H2O2. The H2O2 then reacts with HRP forming the compound I species which returns to its initial form by reaction with UA and intramolecular reduction. The molecular absorption changes of HRP at 420 nm during the reaction enable the UA to be determined. A mathematical model relating the analytical signal to UA, UOx and HRP has been developed and experimentally validated. The possibility of carrying out both enzymatic reactions sequentially or simultaneously is discussed, the latter option producing better analytical performances. The method permits UA determination in the range 1.5 × 10−6-4.0 × 10−5 M, with an R.S.D. of about 3% (n = 5, 1.5 × 10−6 M UA). It has been applied to analyte determination in synthetic serum samples.  相似文献   

11.
A highly sensitive microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of biogenic amines including agmatine (Agm), epinephrine (E), dopamine (DA), tyramine, and histamine in human urine samples. To achieve a high assay sensitivity, the targeted analytes were pre-column labeled by a CL tagging reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). ABEI-tagged biogenic amines after MCE separation reacted with hydrogen peroxide in the presence of horseradish peroxidase (HRP), producing CL emission. Since no CL reagent was added to the running buffer, the background of the CL detection was extremely low, resulting in a significant improvement in detection sensitivity. Detection limits (S/N = 3) were in the range from 5.9 × 10−8 to 7.7 × 10−8 M for the biogenic amines tested, which were at least 10 times lower than those of the MCE–CL methods previously reported. Separation of a urine sample on a 7 cm glass/poly(dimethylsiloxane) (PDMS) microchip channel was completed within 3 min. Analysis of human urine samples found that the levels of Agm, E and DA were in the ranges of 2.61 × 10−7 to 4.30 × 10−7 M, 0.81 × 10−7 to 1.12 × 10−7 M, and 8.76 × 10−7 to 11.21 × 10−7 M (n = 4), respectively.  相似文献   

12.
Tang B  Zhang L  Xu KH 《Talanta》2006,68(3):876-882
A new kind of near-infrared fluorescence agent, tricarbochlorocyanine dye (Cy.7.Cl), had been synthesized in house and used for near-infrared spectrofluorimetric determination of hydrogen peroxide (H2O2) by flow injection analysis (FIA) for the first time. The oxidation reaction of Cy.7.Cl with H2O2 occurred under the catalysis of horseradish peroxidase (HRP) and it was studied in detail. The possible reaction mechanism was discussed. Under optimal experimental conditions, fluorescence from Cy.7.Cl displayed excitation and emission maxima (ex/em) at 780 and 800 nm, respectively. The two linear working ranges were 1.86 × 10−7 to 4.11 × 10−7 mol L−1 and 4.11 × 10−7 to 7.19 × 10−6 mol L−1, respectively. The detection limit was 5.58 × 10−8 mol L−1 of H2O2. The effect of interferences was studied. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater, serum and plant samples.  相似文献   

13.
A rapid and simple method using capillary electrophoresis (CE) with chemiluminescence (CL) detection was developed for the determination of levodopa. This method was based on enhance effect of levodopa on the CL reaction between luminol and potassium hexacyanoferrate(III) (K3[Fe(CN)6]) in alkaline aqueous solution. CL detection employed a lab-built reaction flow cell and a photon counter. The optimized conditions for the CL detection were 1.0 × 10−5 M luminol added to the CE running buffer and 5.0 × 10−5 M K3[Fe(CN)6] in 0.6 M NaOH solution introduced postcolumn. Under the optimal conditions, a linear range from 5.0 × 10−8 to 2.5 × 10−6 M (r = 9991), and a detection limit of 2.0 × 10−8 M (signal/noise = 3) for levodopa were achieved. The precision (R.S.D.) on peak area (at 5.0 × 10−7 M of levodopa, n = 11) was 4.1%. The applicability of the method for the analysis of pharmaceutical and human plasma samples was examined.  相似文献   

14.
We presented a new strategy for ultrasensitive detection of DNA sequences based on the novel detection probe which was labeled with Ag+ using metallothionein (MT) as a bridge. The assay relied on a sandwich-type DNA hybridization in which the DNA targets were first hybridized to the captured oligonucleotide probes immobilized on Fe3O4@Au composite magnetic nanoparticles (MNPs), and then the Ag+-modified detection probes were used to monitor the presence of the specific DNA targets. After being anchored on the hybrids, Ag+ was released down through acidic treatment and sensitively determined by a coupling flow injection–chemiluminescent reaction system (Ag+–Mn2+–K2S2O8–H3PO4–luminol) (FI–CL). The experiment results showed that the CL intensities increased linearly with the concentrations of DNA targets in the range from 10 to 500 pmol L−1 with a detection limit of 3.3 pmol L−1. The high sensitivity in this work may be ascribed to the high molar ratio of Ag+–MT, the sensitive determination of Ag+ by the coupling FI–CL reaction system and the perfect magnetic separation based on Fe3O4@Au composite MNPs. Moreover, the proposed strategy exhibited excellent selectivity against the mismatched DNA sequences and could be applied to real samples analysis.  相似文献   

15.
The guanidinium salt of the new heteropolymolybdate 11-molybdobismuthophosphate Gua6PBiMo11O40 (11-MBP) was synthesized, characterized and used as a reagent for batch spectrophotometric (SP) and sequential injection determination of ascorbic acid (AsA). When compared to other Keggin's heteropolyanions, the reduction of 11-MBP with AsA is both fast and maximal within a pH range of 1.6-2.0. The stoichiometry of the reaction was determined using molar ratio and continuous variation methods and was shown to be 1:1. The molar absorptivity of the reduced form of 11-MBP was 6.0 × 103 L mol−1 cm−1 at 720 nm. The reaction is also specific for AsA. Only cysteine, hydroquinone and hydroxyacids were found to interfere with the reaction, while no interference was observed with the common reducing agents, including reducing sugars, catecholamines, nitrite, sulfite and iron(II) ions. Batch SP and sequential injection analysis (SIA) systems were developed for the determination of AsA, with calibration ranges of the SP methods at 2 × 10−6-8 × 10−5 M for a 10 mm cell and 5 × 10−7-3 × 10−5 M for a 50 mm cell and a limit of detection at 3 × 10−7 M. The linear range of the SIA method was 6 × 10−6-5 × 10−4 M, with a detection limit of 2 × 10−6 M and a sample throughput of 15 h−1. The proposed methods were successfully used for the determination of AsA in both pharmaceuticals and fruit juices, and the results were consistent with those provided by the 2,6-dichlorophenolindophenol method.  相似文献   

16.
An electrochemical DNA detection method for the phosphinothricin acetyltransferase (PAT) gene sequence from the transgenetic plants was established by using a microplate hybridization assay with cadmium sulfide (CdS) nanoparticles as oligonucleotides label. The experiment included the following procedures. Firstly target PAT ssDNA sequences were immobilized on the polystyrene microplate by physical adsorption. Then CdS nanoparticle labeled oligonucleotide probes were added into the microplate and the hybridization reaction with target ssDNA sequences took place in the microplate. After washing the microplate for three times, certain amounts of HNO3 were added into the microplate to dissolve the CdS nanoparticles anchored on the hybrids and a solution containing Cd2+ ion was obtained. At last differential pulse anodic stripping voltammetry (DPASV) was used for the sensitive detection of released Cd2+ ion. Based on this principle a sensitive electrochemical method for the PAT gene sequences detection was established. The voltammetric currents of Cd2+ were in linear range with the target ssDNA concentration from 5.0 × 10− 13 to 1.0 × 10− 10 mol/L and the detection limit was estimated to be 8.9 × 10− 14 mol/L (3σ). The proposed method showed a good promise for the sensitive detection of specific gene sequences with good selectivity for the discrimination of the mismatched sequences.  相似文献   

17.
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au–thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer–AuNPs–HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1 × 102 to 1 × 107 cells mL−1 and high sensitivity with a low detection limit of 30 cells mL−1. Furthermore, after the electrochemical detection, the activation potential of −0.9 to −1.7 V was performed to break Au–thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing.  相似文献   

18.
A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0×10−8 to 0.1 μg ml−1 for herring sperm DNA and 2.0×10−6 to 0.2 μg ml−1 for calf thymus DNA with 3σ detection limits of 8.3×10−9 μg ml−1 for herring sperm DNA and 3.5×10−7 μg ml−1 for calf thymus DNA, respectively. The relative standard deviation for 1.0×10−4 μg ml−1 herring sperm DNA was 0.99% and 2.0×10−3 μg ml−1 for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper.  相似文献   

19.
Trace amounts of Sc(III) and Y(III) can react with [PW11O39]7− to form the ternary Keggin-type complexes: [P(ScIIIW11)O40]6− and [P(YIIIW11)O40]6− having high molar absorptivities in the UV region. Since the rate of the complex-formation was very rapid and the kinetically stable ternary anions migrated in the capillary with different electrophoretic mobilities, the complex-formation reaction was applied to the simultaneous CE determination of Sc(III) and Y(III) with direct UV detection at 250 nm. For both Sc(III) and Y(III), the pre-column method provided linear calibration curves in the range of 2 × 10−7 to 1 × 10−5 M; the respective detection limits were 1 × 10−7 M (the signal-to-noise ratio = 3). The proposed method was successfully applied to the determination of Sc(III) and Y(III) in river water.  相似文献   

20.
Mn(II)-sodium dodecyl sulphate complex (Mn(II)-SDS) is used to mimic the active group of peroxidase. The catalytic characteristic of this mimic enzyme catalyst in the oxidation reaction of fluorescence substrate, tetraethyldiaminoxanthyl chloride (Pyronine B (PB)), with hydrogen peroxide has been studied. The experimental results show that Mn(II)-SDS complex has similar catalytic activity that of peroxidase. The steady-state catalytic rate depends upon mimic enzyme and substrate concentrations, and the Michaelis-Menten parameters Km, Vmax and Kcat are 7.6×10−6 M, 7.9×10−7 M s−1 and 7.9 s−1, respectively. The catalytic activity of Mn(II)-SDS complex is compared with those of HRP and Hemin. Though the catalytic activity of Mn(II)-SDS complex is 15.9% of that of HRP, it can catalyze the oxidation reaction of PB with hydrogen peroxide lead to fluorescence quenching of PB. Under optimum conditions, linear relationship between fluorescence quenching F0/F and concentration of H2O2 is in the range of (0.0-3.6) × 10−7 M. The detection limit is determined to be 3.0×10−9 M. By coupling this mimic catalytic reaction with the catalytic reaction of glucose oxidase (GOD), glucose can be detected. Linear relationship between F0/F and concentration of glucose is in the range of (0.0-1.4) × 10−7 M. The detection limit is determined to be 4.2×10−9 M. This method is applied to the determination of glucose in human serum and the results are in good agreement with the phenol-4-aminoantipyrine (4-AAP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号