首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solvation parameter model is used to characterize the retention properties of four application-specific open-tubular columns (Rtx-CLPesticides, Rtx-OPPesticides, Rtx-Dioxin and Rtx-Dioxin2) at five equally spaced temperatures over the range 60-140 degrees C. Cluster analysis is used to compare the system constants to a database of forty open-tubular columns characterized according to the same method. System constants differences and retention factor correlation plots are then used to determine selectivity differences between the application-specific columns and their nearest neighbors identified by cluster analysis. The Rtx-CLPesticides and Rtx-OPPesticides columns are shown to belong to the selectivity group containing poly(dimethylmethyltrifluoroprpylsiloxane) stationary phases with Rtx-OPPesticides having a similar selectivity to a poly(dimethylmethyltrifluoropropylsiloxane) stationary phase containing 20% methyltrifluoropropylsiloxane monomer (DB-200) and Rtx-CLPesticides separation properties for a stationary phase containing less than 20% methyltrifluoropropylsiloxane monomer. The Rtx-Dioxin and Rtx-Dioxin2 columns are located in the selectivity group dominated by the poly(dimethyldiphenylsiloxane) stationary phases containing less than 20% diphenylsiloxane monomer. The Rtx-Dioxin and Rtx-Dioxin2 columns are shown to be selectivity equivalent to a (5% phenyl) carborane-siloxane copolymer stationary phase (Stx-500) and a second generation silarylene-siloxane copolymer stationary phase containing dimethylsiloxane and diphenylsiloxane monomers (DB-XLB), respectively.  相似文献   

2.
The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.  相似文献   

3.
The solvation parameter model is used to characterize the selectivity of DB-608 and DB-624 open-tubular columns at five equally spaced temperatures over the range 60 to 140 degrees C. The system constants for the DB-608 and DB-624 columns were used as selectivity parameters to search a database of open-tubular columns to identify columns with similar selectivity. The search was refined using the absolute deviation of the system constants and retention factor regression models for varied compounds. For method development it is shown that the selectivity of the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer (DB-1301) is equivalent to DB-624 and the poly(dimethyldiphenylsiloxane) stationary phases containing either 50 or 65% diphenylsiloxane monomer (Rtx-50 and Rtx-65) are suitable choices for DB-608.  相似文献   

4.
The solvation parameter model is used to characterize the retention properties of a poly(methylphenylsiloxane) column Rxi-50 over the temperature range 60-240 degrees C. The smooth variation of the system constants with temperature affords a general picture of how the relative importance of the different intermolecular interactions change with temperature. The system constants and retention factors for varied compounds are compared with those for Rtx-50 prepared with a similar stationary phase but using a different surface deactivation technique. The two columns are shown to be nearly selectivity equivalent. The Rtx-50 column is slightly more cohesive, dipolar/polarizable and hydrogen-bond basic than Rxi-50, while Rxi-50 is slightly more electron lone pair attractive and hydrogen-bond acidic. Only the difference in hydrogen-bond acidity can be identified with some certainty as related to the difference in deactivation processes. For compounds with a separation greater than 0.2 retention factor units on Rtx-50, it should be relatively straightforward to achieve an acceptable separation for the same compounds on Rxi-50.  相似文献   

5.
The solvation parameter model is used to characterize the retention properties of the bis(cyanopropylsiloxane)-co-methylsilarylene, HP-88, and poly(siloxane), Rtx-440, stationary phases over the temperature range 60-140 degrees C. HP-88 is among the most cohesive, dipolar/polarizable and hydrogen-bond basic of stationary phases for open-tubular column gas chromatography. It has no hydrogen-bond acidity or capacity for electron lone pair interactions. It exhibits similar selectivity to the poly(cyanopropylsiloxane) stationary phase SP-2340. Rtx-440 is a low-polarity, low-cohesion stationary phase with a moderate capacity for dipolar/polarizable and hydrogen-bond base interactions. It has no hydrogen-bond acidity and possesses weak electron lone pair interactions. It has unique selectivity when compared against a system constants database for 28 common stationary phase compositions. Cluster analysis indicated that the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer, DB-1301, the poly(dimethyldiphenylsiloxane) stationary phase containing 20% diphenylsiloxane monomer, Rtx-20, the poly(siloxane) stationary phase of unknown composition, DB-624, and DX-1 [a mixture of poly(dimethylsiloxane) and poly(ethylene glycol) 9:1] are the closest selectivity matches in the database. The selectivity of DB-1301 and Rtx-440 are very similar for solutes with weak hydrogen-bond acidity allowing one stationary phase to be substituted for the other with likely success. For strong hydrogen-bond acids, such as phenols, DB-1301 and Rtx-440 exhibit different selectivity.  相似文献   

6.
The solvation parameter model is used to characterize the retention properties of five open-tubular column stationary phases (ZB-5 ms, DB-5 ms, DB-XLB, DB-17 ms, and DB-35 ms) based on silarylene-siloxane copolymer chemistries at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and regression models for varied compounds are used to establish the selectivity equivalence of the silarylene-siloxane copolymer stationary phases and to compare their separation characteristics with poly(dimethyldiphenylsiloxane) stationary phases containing a nominally similar concentration of phenyl groups. These studies demonstrate that ZB-5 ms and DB-5 ms are selectivity equivalent. DB-XLB is significantly more dipolar and polarizable than DB-5 ms. In general terms, the silarylenesiloxane copolymer stationary phases are slightly less cohesive and more dipolar and polarizable with similar hydrogen-bond basicity to the poly(dimethyldiphenylsiloxane) stationary phases they were designed to replace. None of the silarylenesiloxane copolymer or poly(dimethyldiphenylsiloxane) stationary phases are hydrogen-bond acidic. Selectivity differences between the two types of stationary phase are temperature dependent and tend to be smaller at higher temperatures within the temperature range studied. Consequently, selectivity differences cannot be globalized without reference to the temperature for the comparison.  相似文献   

7.
8.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

9.
The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti–6Al–4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69–76 (for 6–8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73–77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm.  相似文献   

10.
The solvation parameter model is used to study the influence of temperature and composition on the selectivity of nine poly(siloxane) and two poly(ethylene glycol) stationary phase chemistries for open-tubular column gas chromatography. A database of system constants for the temperature range 60-140 degrees C was constructed from literature values with additional results determined for HP-50+, DB-210, DB-1701, DB-225 and SP-2340 columns. The general contribution of monomer composition (methyl, phenyl, cyanopropyl, and trifluoropropyl substituents) on the capacity of poly(siloxane) stationary phases for dispersion, electron lone pair, dipole-type and hydrogen-bond interactions is described. The selectivity coverage of the open-tubular column stationary phases is compared with a larger database for packed column stationary phases at a reference temperature of 120 degrees C. The open-tubular column stationary phases provide reasonable coverage of the range of dipole-type and hydrogen-bond base interactions for non-ionic packed column stationary phases. Deficiencies are noted in the coverage of electron lone pair interactions. None of the open-tubular column stationary phases are hydrogen-bond acids. The system constants are shown to change approximately linearly with temperature over the range 60-140 degrees C. The intercepts and slopes of these plots are used to discuss the influence of temperature on stationary phase selectivity.  相似文献   

11.
A novel alternating copolymer-based organic phase was synthesized using a new N-substituted maleimide monomer for the development of alternating copolymer-grafted silica for high-performance liquid chromatographic applications. This new monomer (DGMI) was copolymerized with octadecyl acrylate (ODA) from 3-mercaptopropyltrimethoxysilane-grafted silica to produce Sil-poly(ODA-alt-DGMI). The organic phase was characterized by the elemental analysis and the diffuse reflectance infrared Fourier transform spectroscopy. Tocopherol isomers and steroids were used as analytes for the evaluation of the chromatographic selectivity profiles of this novel stationary phase. The selectivity of this column was then compared with a polymeric ODS column and previously developed another alternating copolymer-grafted silica (without the glutamide-derived moiety) column, Sil-poly(ODA-alt-N-octadecylmaleimide). The complete baseline separation of tocopherol isomers in an isocratic mode has been achieved within 25 min with the Sil-poly(ODA-alt-DGMI). The separation of eight kinds of estrogenic steroids and corticoids has also been achieved in an isocratic mode with this column. Significant differences in separation selectivity between Sil-poly(ODA-alt-DGMI) and polymeric ODS columns were observed towards the steroids, and compared with the reference columns, a better separation profile for these analytes was obtained with the Sil-poly(ODA-alt-DGMI). The results of this investigation indicated that the enhancement of selectivity of Sil-poly(ODA-alt-DGMI) towards the test analytes arose from the multiple interaction mechanism such as hydrophobic effect, carbonyl-π and hydrogen-bonding interactions, and such integrated interactions originated from the addition of two amide groups in the N-substituted maleimide monomer.  相似文献   

12.
A broad appraisal of the kinetic performance of organic polymeric monolithic columns is reported using commercially available poly(styrene-co-divinylbenzene) monolithic columns (Dionex ProSwift™ RP-1S). Analysis of a protein digest sample at elevated temperatures (≥80 °C) indicated no apparent analyte degradation using an inert polymeric stationary phase. Comparison between low molecular weight solute and peptide separations highlighted the markedly different mass transport processes observed on macroporous monolithic beds and an improved C term at elevated temperature in both instances. The current usefulness of this column format for biomolecule analysis was further studied via employment of a kinetic performance characterisation for the first time to provide direction for column development servicing this application.  相似文献   

13.
A simple capillary flow porometer (CFP) was assembled for through-pore structure characterization of monolithic capillary liquid chromatography columns in their original chromatographic forms. Determination of differential pressures and flow rates through dry and wet short capillary segments provided necessary information to determine the mean diameters and size distributions of the through-pores. The mean through-pore diameters of three capillary columns packed with 3, 5, and 7 μm spherical silica particles were determined to be 0.5, 1.0 and 1.4 μm, with distributions ranging from 0.1 to 0.7, 0.3 to 1.1 and 0.4 to 2.6 μm, respectively. Similarly, the mean through-pore diameters and size distributions of silica monoliths fabricated via phase separation by polymerization of tetramethoxysilane (TMOS) in the presence of poly(ethylene glycol) (PEG) verified that a greater number of through-pores with small diameters were prepared in columns with higher PEG content in the prepolymer mixture. The CFP system was also used to study the effects of column inner diameter and length on through-pore properties of polymeric monolithic columns. Typical monoliths based on butyl methacrylate (BMA) and poly(ethylene glycol) diacrylate (PEGDA) in capillary columns with different inner diameters (i.e., 50–250 μm) and lengths (i.e., 1.5–3.0 cm) were characterized. The results indicate that varying the inner diameter and/or the length of the column had little effect on the through-pore properties. Therefore, the through-pores are highly interconnected and their determination by CFP is independent of capillary length.  相似文献   

14.
High performance liquid chromatography in a quasi-normal phase mode (QNP) is used to separate the nitrogen group-types (pyrrole and pyridine) that are found in petroleum. A new type of stationary phase, hypercrosslinked polystyrene, is used to achieve this separation. Three different hypercrosslinked polystyrene stationary phases are compared under quasi-normal phase mode; a commercial 5-HGN packing, and two hypercrosslinked phases on silica particles. The utility of the columns for petroleum-based separations was explored with the use of 21 analytical standards. Partial elucidation of adsorption retention mechanisms for the columns are shown, as well as a comparison of retention characteristics for the three columns. The silica particle column derived with toluene (HC-Tol) was found to have the best selectivity for nitrogen group-types and polycyclic aromatic hydrocarbons (PAHs), attaining a separation under gradient conditions in less than 30 min.  相似文献   

15.
Seven new functionalized polymerizable ionic liquids were chemically prepared, and later applied for the preparation of polymeric stationary phases in gas chromatography. These coated GC columns, which exhibited good thermal stabilities (240–300 °C) and very high efficiencies (3120–4200 plates/m), have been characterized using the Abraham solvation parameter model. The chromatographic behavior of these polymeric IL columns has been deeply studied observing excellent selectivities in the separation of many organic substances such as alkanes, ketones, alcohols, amines or esters in mixtures of polar and non polar solvents or fragrances. Remarkably, the challenging separation of xylene isomers has been possible using a bis(trifluoromethylsulfonyl)amide based imidazolium IL coated column as a gas chromatography stationary phase.  相似文献   

16.
We packed an ionic liquid (IL)-functionalized stationary phase – based on 1-octyl-3-propylimidazolium chloride covalently bounded to silica gel – into a 3.2 mm × 250 mm column for the simultaneous separation of acidic, basic, and neutral compounds using carbon dioxide subcritical/supercritical fluid chromatography (SFC), and examined the effects of the pressure, temperature, co-solvents, and additives on the retention behavior of the analytes. The model compounds tested for SFC separation are acetaminophen, metoprolol, fenoprofen, ibuprofen, naphthalene, and testosterone. The data indicate that hydrogen-bonding and hydrophobic interactions between the analytes and the IL-modified stationary phase seem to involve in the separation process. Simultaneous separation of acidic, basic, and neutral compounds via SFC was successful at a co-solvent content of 20% MeOH, a pressure of 110 bar, and a column temperature of 35 °C. The relative standard deviations of the retention times and peak areas at 50 ppm were all less than 4 and 8% (n = 6), respectively.  相似文献   

17.
A simple approach to fabricate hybrid monolithic column within the confines of fused-silica capillaries (75 μm i.d.) was introduced. A polyhedral oligomeric silsesquioxanes (POSS) reagent containing a methacrylate group was selected as functional monomer, and copolymerized with bisphenol A dimethacrylate (BPADMA) or ethylene dimethacrylate (EDMA) in the presence of porogenic solvents via thermally initiated free radical polymerization. After optimization of the preparation conditions, two POSS-containing hybrid monoliths were successfully prepared and exhibited good permeability and stability. By comparison of the separation efficiencies of the resulting poly(POSS-co-BPADMA) and poly(POSS-co-EDMA) monoliths in capillary electrochromatography (CEC) and capillary liquid chromatography (cLC), it was indicated the former has better column efficiencies for alkylbenzenes, phenols, anilines and PAHs in CEC and cLC than the latter. Particularly, the hybrid poly(POSS-co-BPADMA) monolith is more suitable for separation of PAHs due to π–π interaction between the analytes and aromatic rings in the surface of monolithic stationary phase.  相似文献   

18.
Monolithic columns are widely used in shotgun proteome analysis. However, it is difficult to increase the separation capability and proteome coverage by using conventionally organic polymer-based monolithic column due to the difficulty of controlling homogeneity of the overall pore structure (both pores and microglobules), which leads to relatively low column efficiency. Therefore, we studied the effect of constitute and percentage of porogenic solvent, functional monomer, column length, and separation gradient on the peak capacity and proteome coverage by methacrylate-based reversed phase monolithic columns. It was demonstrated that the porous property of the hydrophobic monolith, which was mainly determined by the porogenic solvent, was crucial to the proteome coverage when similar methacrylate monomer was utilized and a ternary porogenic solvent was adopted to prepare C12 monolithic column with relatively homogeneous overall pore structure. It was also shown that high proteome coverage could be reliably obtained with online multidimensional separation using totally monolithic columns system with the length of analytical column at 85 cm and reversed phase separation gradient at 210 min.  相似文献   

19.
The application of the solvation parameter model for the classification of wall-coated open-tubular columns for gas chromatography is reviewed. A system constants database for 50 wall-coated open-tubular columns at five equally spaced temperatures between 60 and 140 degrees C is constructed and statistical and chemometric techniques used to identify stationary phases with equivalent selectivity, the effect of monomer chemistry on selectivity, and the selection of stationary phases for method development. The system constants database contains examples of virtually all commercially available common stationary phases.  相似文献   

20.
A two-dimensional ion chromatography (2D-IC) approach has been developed which provides greater resolution of complex samples than is possible currently using a single column. Two columns containing different stationary phases are connected via a tee-piece, which enables an additional eluent flow and independent control of eluent concentration on each column. The resultant mixed eluent flow at the tee-piece can be varied to produce a different eluent concentration on the second column. This allows analytes strongly retained on the first column to be separated rapidly on the second column, whilst maintaining a highly efficient, well resolved separation of analytes retained weakly on the first column. A group of 18 inorganic anions has been separated to demonstrate the utility of this approach and the proposed 2D-IC method provided separation of this mixture with resolution of all analytes greater than 1.3. Careful optimisation of the eluent profiles on both columns resulted in run times of less than 28 min, including re-equilibration. Separations were performed using isocratic or gradient elution on the first column, with an isocratic separation being used on the second column. Switching of the analytes onto the second column was performed using a gradient pulse of concentrated eluent to quickly elute strongly retained analytes from the first column onto the second column. The separations were highly repeatable (RSD of 0.01–0.12% for retention times and 0.08–2.9% for peak areas) and efficient (typically 8000–260,000 plates). Detection limits were 3–80 ppb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号