共查询到20条相似文献,搜索用时 140 毫秒
1.
Qun Gu Frank David Frédéric Lynen Klaus Rumpel Guowang Xu Paul De Vos Pat Sandra 《Journal of chromatography. A》2010,1217(26):4448-4453
Comprehensive two-dimensional gas chromatography (GC × GC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GC × GC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GC × GC system. The data show that flow modulated GC × GC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria. 相似文献
2.
Flow modulation of methane-doped carrier gas is used to visualize the second dimension hold-up time in GC × GC continuously throughout the run. This provides an internal reference of hold-up time and presents a straightforward means of examining retention in each dimension of GC × GC. Retention factors on similar and dissimilar column pairs are examined. Stationary phase bleed is shown to be retained by the second dimension column. 相似文献
3.
In the case of a non-focusing modulator for comprehensive two-dimensional gas chromatography (GC × GC), the systematic distortions introduced when the modulator loads the second-dimension column give rise to a characteristic peak shape. Depending on the operating conditions this systematic distortion can be the dominant component of the second-dimension elution profiles in the GC × GC peak. The present investigation involved a systematic investigation of peak shape in pulsed-flow modulation (PFM)–GC × GC. It is shown that low flow ratio can lead to significant peak skewing and increasing the flow ratio reduces the magnitude of peak skewing. Validation of the peak shape model is made by comparison with experimental data. The residuals from the fitting process (normalised to the maximum detector response) vary between –1.5% and +2.6% for an isothermal model and between –1.0% and +3.0% for a temperature-programmed model. 相似文献
4.
Frédérick Adam Didier Thiébaut Fabrice Bertoncini Marion Courtiade Marie-Claire Hennion 《Journal of chromatography. A》2010,1217(8):1386-1394
This paper reports the conditions of online hyphenation of supercritical fluid chromatography (SFC) with twin comprehensive two-dimensional gas chromatography (twin-GC × GC) for detailed characterization of middle distillates; this is essential for a better understanding of reactions involved in refining processes. In this configuration, saturated and unsaturated compounds that have been fractionated by SFC are transferred on two different GC × GC columns sets (twin-GC × GC) placed in the same GC oven. Cryogenic focusing is used for transfer of fractions into the first dimension columns before simultaneous GC × GC analysis of both saturated and unsaturated fractions. The benefits of SFC–twin-GC × GC are demonstrated for the extended alkane, iso-alkane, alkene, naphthenes and aromatics analysis (so-called PIONA analysis) of diesel samples which can be achieved in one single injection. For that purpose, saturated and unsaturated compounds have been separated by SFC using a silver loaded silica column prior to GC × GC analysis. Alkenes and naphthenes are quantitatively recovered in the unsaturated and saturated fractions, respectively, allowing their identification in various diesel samples. Thus, resolution between each class of compounds is significantly improved compared to a single GC × GC run, and for the first time, an extended PIONA analysis of diesel samples is presented. 相似文献
5.
Volker Wulf Nils Wienand Michaela Wirtz Hans-Willi Kling Siegmar Gäb Oliver J. Schmitz 《Journal of chromatography. A》2010,1217(5):749-754
Multidimensional gas-chromatographic analyses of olesochemically based nonionic, anionic and several cationic surfactants in industrial cleaners are demonstrated. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry allows the simultaneous determination of fatty alcohols, fatty alcohol sulphates and alkyl polyglucosides. In addition, the determination of fatty alcohol ethoxylates up to C10EO8 (highest degree of ethoxylation) and C18EO5 (longest C-chain at an ethoxylation degree of five) and the analysis of fatty alcohol alkoxylates that contain ethoxy (EO) and propoxy (PO) groups could be realized. Because of decomposition in the injector and a weak EI-fragmentation, cationic surfactants such as alkyl benzyl dimethyl ammonium chloride could also be identified by their characteristic fragments. Thermogravimetric analyses confirmed that the temperature in a normal GC injector is not high enough to cause thermal decomposition of esterquats. However, we could demonstrate that a modified silylation procedure forms decomposition products of esterquats in the GC injector which are detectable by GC × GC–(TOF)MS and allows the identification of such GC-atypical analytes. 相似文献
6.
The most commonly used military fog oil is characterized by comprehensive two-dimensional gas chromatography (GC×GC) coupled to either Flame Ionization Detection (FID) or Time-of-Flight Mass Spectrometric Detection (TOFMS) to advance the knowledge regarding the complete chemical makeup of this complex matrix. Two different GC×GC column sets were investigated, one employing a non-polar column combined with a shape selective column and the other an inverse column set (medium-polar/non-polar). The inverse set maximizes the use of the two-dimensional separation space and segregates aliphatic from aromatic fractions. The shape selective column best separates individual polycyclic aromatic hydrocarbons (PAHs) from the bulk oil. The results reveal that fog oil (FO) is composed mainly of aliphatic compounds ranging from C10 to C30, where naphthenes comprise the major fraction. Although many different species of aromatics are present, they constitute only a minor fraction in this oil, and no conjugated PAHs are found. The composition of chemically similar aliphatic constituents limits the analytical power of silica gel fractionation and GC–MS analysis to characterize FO. Among the aliphatic compounds identified are alkanes, cyclohexanes, hexahydroindanes, decalins, adamantanes, and bicyclohexane. The aromatic fraction is composed of alkylbenzene compounds, indanes, tetrahydronaphthalenes, partially hydrogenated PAHs, biphenyls, dibenzofurans and dibenzothiophenes. This work represents the best characterization of military fog oil to date. As the characterization process shows, information on such complex samples can only be parsed using a combination of sample preprocessing steps, multiple detection schemes, and an intelligent selection of column chemistries. 相似文献
7.
Comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC-TOFMS) provides high resolution separations of complex samples with a mass spectrum at every point in the separation space. The large volumes of multidimensional data obtained by GC × GC-TOFMS analysis are analyzed using a principal component analysis (PCA) method described herein to quickly and objectively discover differences between complex samples. In this work, we submitted 54 chromatograms to PCA to automatically compare the metabolite profiles of three different species of plants, namely basil (Ocimum basilicum), peppermint (Mentha piperita), and sweet herb stevia (Stevia rebaudiana), where there were 18 chromatograms for each type of plant. The 54 scores of the m/z 73 data set clustered in three groups according to the three types of plants. Principal component 1 (PC 1) separated the stevia cluster from the basil and peppermint clusters, capturing 61.84% of the total variance. Principal component 2 (PC 2) separated the basil cluster from the peppermint cluster, capturing 16.78% of the total variance. The PCA method revealed that relative abundances of amino acids, carboxylic acids, and carbohydrates were responsible for differentiating the three plants. A brief list of the 16 most significant metabolites is reported. After PCA, the 54 scores of the m/z 217 data set clustered in three groups according to the three types of plants, as well, yielding highly loaded variables corresponding with chemical differences between plants that were complementary to the m/z 73 information. The PCA data mining method is applicable to all of the monitored selective mass channels, utilizing all of the collected data, to discover unknown differences in complex sample profiles. 相似文献
8.
David K. Pinkerton Brendon A. ParsonsTodd J. Anderson Robert E. Synovec 《Analytica chimica acta》2015
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC–TOFMS) is a well-established instrumental platform for complex samples. However, chemometric data analysis is often required to fully extract useful information from the data. We demonstrate that retention time shifting from one modulation to the next, Δ2tR, is not sufficient alone to quantitatively describe the trilinearity of a single GC × GC–TOFMS run for the purpose of predicting the performance of the chemometric method parallel factor analysis (PARAFAC). We hypothesize that analyte peak width on second dimension separations, 2Wb, also impacts trilinearity, along with Δ2tR. The term trilinearity deviation ratio, TDR, which is Δ2tR normalized by 2Wb, is introduced as a quantitative metric to assess accuracy for PARAFAC of a GC × GC–TOFMS data cube. We explore how modulation ratio, MR, modulation period, PM, temperature programming rate, Tramp, sampling phase (in-phase and out-of-phase), and signal-to-noise ratio, S/N, all play a role in PARAFAC performance in the context of TDR. Use of a PM in the 1–2 s range provides an optimized peak capacity for the first dimension separation (500–600) for a 30 min run, with an adequate peak capacity for the second dimension separation (12–15), concurrent with an optimized two-dimensional peak capacity (6000–7500), combined with sufficiently low TDR values (0–0.05) to facilitate low quantitative errors with PARAFAC (0–0.5%). In contrast, use of a PM in the 5 s or greater range provides a higher peak capacity on the second dimension (30–35), concurrent with a lower peak capacity on the first dimension (100–150) for a 30 min run, and a slightly reduced two-dimensional peak capacity (3000–4500), and furthermore, the data are not sufficiently trilinear for the more retained second dimension peaks in order to directly use PARAFAC with confidence. 相似文献
9.
Konstantinos A. Kouremenos James Pitt Philip J. Marriott 《Journal of chromatography. A》2010,1217(1):104-111
Comprehensive two-dimensional gas chromatography (GC × GC) time-of-flight mass spectrometry (ToFMS) was applied to the analysis of urinary organic acids from patients with inborn errors of metabolism. Abnormal profiles were obtained from all five patients studied. Methylmalonic academia and deficiencies of 3-methylcrotonyl-CoA carboxylase and medium chain acyl-CoA dehydrogenase gave diagnostic profiles while deficiencies of very long chain acyl-CoA dehydrogenase and mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase gave profiles with significant increases in dicarboxylic acids suggestive of these disorders. The superior resolving power of GC × GC with ToFMS detection was useful in separating isomeric organic acids that were not resolved using one-dimensional GC. A novel urinary metabolite, crotonyl glycine, was also discovered in the mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase sample which may be a useful specific diagnostic marker for this disorder. The quantitative aspects of GC × GC were investigated using stable isotope dilution analyses of glutaric, glyceric, orotic, 4-hydroxybutyric acids and 3-methylcrotonylglycine. Correlation coefficients for linear calibrations of the analytes ranged from 0.9805 to 0.9993 (R2) and analytical recoveries from 77% to 99%. This study illustrates the potential of GC × GC–ToFMS for the diagnosis of organic acidurias and detailed analysis of the complex profiles that are often associated with these disorders. 相似文献
10.
Peter Quinto Tranchida Giorgia Purcaro Lanfranco Conte Paola Dugo Giovanni Dugo Luigi Mondello 《Journal of chromatography. A》2009,1216(43):7301-7306
The present research is based on the full exploitation of the separation power of a 0.05 mm internal diameter (ID) capillary, as a comprehensive two-dimensional (2D) GC (GC × GC) secondary column, with the objective of attaining very high-resolution second dimension separations. The aim was achieved by using a split-flow system developed in previous research [P.Q. Tranchida, A. Casilli, P. Dugo, G. Dugo, L. Mondello, Anal. Chem. 79 (2007) 2266], and a dual-oven GC × GC instrument. The column combination employed consisted of a polar 30 m × 0.25 mm ID column connected, by means of a T union, to a detector-linked high-resolution 1.1 m × 0.05 mm ID apolar analytical column and to a 0.33 m × 0.05 mm ID retention gap; the latter was connected to a manually operated split valve. As previously demonstrated, the use of a split valve enables the regulation of gas flows through both analytical columns, generating the most appropriate gas linear velocities. Comprehensive 2D GC experiments were carried out on Arabica roasted coffee volatiles (previously extracted by means of solid-phase microextraction) with the split-valve closed (equal to what can be defined as conventional GC × GC) and with the split-valve opened at various degrees. The reasons why it is absolutely not effective to use a 0.05 mm ID column as second dimension in a conventional GC × GC instrument will be discussed and demonstrated. On the contrary, the use of a 0.05 mm ID column as second dimension, under ideal conditions in a split-flow, twin-oven system, will also be illustrated and discussed. 相似文献
11.
Bill Guthery Tom Bassindale Alan Bassindale Colin T. Pillinger Geraint H. Morgan 《Journal of chromatography. A》2010,1217(26):4402-4410
A technique using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) is applied to a qualitative analysis of three sample extracts from hair suspected of containing various drug compounds. The samples were also subjected to a quantitative target analysis for codeine, morphine, 6-monoacetylmorphine (6-MAM), amphetamine, methamphetamine, methylenedioxyamphetamine (MDA), methylenedioxymethylamphetamine (MDMA), methadone, and benzylpiperazine (BZP) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). GC × GC/TOFMS provided a non-specific procedure that identified various drugs, metabolites, and impurities not included in the target analysis. They included cocaine, diazepam, and methaqualone (quaalude). Comprehensive GC × GC separation was achieved using twin-stage cryo-modulation to focus eluant from a DB-5ms (5% phenyl) to a BPX50 (50% phenyl) GC column. The TOF mass spectrometer provided unit mass resolution in the mass range m/z 5–1000 and rapid spectral acquisition (≤500 spectra/s). Clean mass spectra of the individual components were obtained using mass spectral deconvolution software. The ‘unknown’ components were identified by comparison with mass spectra stored in a library database. 相似文献
12.
Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the internal standard method. This work provides the ground for further analysis of pyrolysis oils of diverse sources for a rational design of both their production and utilization process. 相似文献
13.
Cristina Flego Nicola GigantielloWallace O. Parker Jr. Vincenzo Calemma 《Journal of chromatography. A》2009,1216(14):2891-2899
A detailed mass map of C10's is required to better understand the mechanism of decalin catalytic ring opening/rearrangement. Conventional GC-FID or GC-MSD techniques could not accurately identify these isomers. Comprehensive two-dimensional gas-chromatography with MSD (GC × GC-MSD) proved to be a powerful tool for this purpose, due to its enhanced peak resolution. Analytical response quality was evaluated by the separation of two contiguous peaks and MS profile “clearness”. This allowed fragmentation study for nearly pure species. Tentative attributions, based on fragmentation-rearrangement in the MSD environment, were made after confirming that MS data bases routinely mistake olefins for cyclo-alkanes. 相似文献
14.
Elizabeth M. Humston Joshua D. Knowles Andrew McShea Robert E. Synovec 《Journal of chromatography. A》2010,1217(12):1963-1970
Quality control of cacao beans is a significant issue in the chocolate industry. In this report, we describe how moisture damage to cacao beans alters the volatile chemical signature of the beans in a way that can be tracked quantitatively over time. The chemical signature of the beans is monitored via sampling the headspace of the vapor above a given bean sample. Headspace vapor sampled with solid-phase micro-extraction (SPME) was detected and analyzed with comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC–TOFMS). Cacao beans from six geographical origins (Costa Rica, Ghana, Ivory Coast, Venezuela, Ecuador, and Panama) were analyzed. Twenty-nine analytes that change in concentration levels via the time-dependent moisture damage process were measured using chemometric software. Biomarker analytes that were independent of geographical origin were found. Furthermore, prediction algorithms were used to demonstrate that moisture damage could be verified before there were visible signs of mold by analyzing subsets of the 29 analytes. Thus, a quantitative approach to quality screening related to the identification of moisture damage in the absence of visible mold is presented. 相似文献
15.
An image processing approach originating from the proteomics field has been transferred successfully to the processing of data obtained with comprehensive two-dimensional gas chromatographic separations data. The approach described here has proven to be a useful analytical tool for unbiased pattern comparison or profiling analyses, as demonstrated with the differentiation of volatile patterns (“aroma”) from fruits such as apples, pears, and quince fruit. These volatile patterns were generated by headspace solid phase microextraction coupled to comprehensive two-dimensional gas chromatography (HS-SPME-GC × GC). The data obtained from GC × GC chromatograms were used as contour plots which were then converted to gray-scale images and analyzed utilizing a workflow derived from 2D gel-based proteomics. Run-to-run variations between GC × GC chromatograms, respectively their contour plots, have been compensated by image warping. The GC × GC images were then merged into a fusion image yielding a defined and project-wide spot (peak) consensus pattern. Within detected spot boundaries of this consensus pattern, relative quantities of the volatiles from each GC × GC image have been calculated, resulting in more than 700 gap free volatile profiles over all samples. These profiles have been used for multivariate statistical analysis and allowed clustering of comparable sample origins and prediction of unknown samples. At present state of development, the advantage of using mass spectrometric detection can only be realized by data processing off-line from the identified software packages. However, such information provides a substantial basis for identification of statistically relevant compounds or for a targeted analysis. 相似文献
16.
The separation characteristics of alkylchloroformate-derivatised amino acids (AAs) by using comprehensive two-dimensional gas chromatography (GC×GC) is reported. The use of a low-polarity/polar column set did not provide as good a separation performance as that achieved with a polar/non-polar column set, where the latter appeared to provide less correlation over the separation space. The degree of component correlation in each column set was estimated by using the correlation coefficient (r2; for 1tR and 2tR data) with the low-polarity/polar and polar/low-polarity sets returning correlation coefficients of 0.86, and 0.00 respectively, under the respective conditions employed for the experiments. The 1.5-m non-polar 2D column (0.1-mm ID; 0.1-m film thickness) gave peak halfwidths of the order of 50–80 ms. Linearity of detection was good, over a three order of magnitude concentration range, with typical lower detection limit of ca. 0.01 mg L–1, compared with 0.5 mg L–1 for normal GC operation with splitless injection. The method was demonstrated for analysis of AAs in a range of food and beverage products, including wine, beer and honey. The major AA in these samples was proline. The Heineken beer sample had a relatively more complex and more abundant AA content compared with the other beer sample. The wine and honey samples also gave a range of AA compounds. Repetition of the sample preparation/analysis procedure for the honey sample gave acceptable reproducibility for individual AAs. 相似文献
17.
Bussayarat Maikhunthod Paul D. MorrisonDarryl M. Small Philip J. Marriott 《Journal of chromatography. A》2010,1217(9):1522-1529
In this study, a new system for analysis using a dual comprehensive two-dimensional gas chromatography/targeted multidimensional gas chromatography (switchable GC × GC/targeted MDGC) analysis was developed. The configuration of this system not only permits the independent operation of GC, GC × GC and targeted MDGC analyses in separate analyses, but also allows the mode to be switched from GC × GC to targeted MDGC any number of times through a single analysis. By incorporating a Deans switch microfluidics transfer module prior to a cryotrapping device, the flow stream from the first dimension column can be directed to either one of two second dimension columns in a classical heart-cutting operation. Both second columns pass through the cryotrap to allow solute bands to be focused and then rapidly remobilized to the respective second columns. A short second column enables GC × GC operation, whilst a longer column is used for targeted MDGC. Validation of the system was performed using a standard mixture of compounds relevant to essential oil analysis, and then using compounds present at different abundances in lavender essential oil. Reproducibility of retention times and peak area responses demonstrated that there was negligible variation in the system over the course of multiple heart-cuts, and proved the reliable operation of the system. An application of the system to lavender oil, as a more complex sample, was carried out to affirm system feasibility, and demonstrate the ability of the system to target multiple components in the oil. The system was proposed to be useful for study of aroma-impact compounds where GC × GC can be incorporated with MDGC to permit precise identification of aroma-active compounds, where heart-cut multidimensional GC-olfactometry detection (MDGC-O) is a more appropriate technology for odour assessment. 相似文献
18.
A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS) and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC × GC/TOFMS), respectively. In the GC/MS analysis, serially coupled columns were used. By comparing the GC/MS results with GC × GC/TOFMS results, many more components in the essential oil could be found within the two-dimensional separation space of GC × GC. The quantitative determination of components in the essential oil was performed by GC × GC with flame ionization detection (FID), using a method of multiple internal standards calibration. 相似文献
19.
Monolithic columns invented in chromatographic praxis almost 40 years ago gained nowadays a lot of popularity in separations by liquid chromatographic technique. At the same time, application of monolithic columns in gas chromatography is less common and only a single review published by Svec et al. [1] covers this field of research. Since that time a lot of new findings on application and properties of monolithic columns in gas chromatography have been published in the literature deserving consideration and discussion. This review considers preparation of monolithic columns for GC, an impact of preparation conditions on column performance, optimization of separation conditions for GC analysis on monolithic columns and other important aspects of preparation and usage of monolithic capillary columns in GC. A final part of the review discusses the modern trends and possible applications in the future of capillary monolithic columns in GC. 相似文献
20.
Thomas Skov Jamin C. Hoggard Rasmus Bro Robert E. Synovec 《Journal of chromatography. A》2009,1216(18):4020-4029
The use of PARAFAC for modeling GC × GC-TOFMS peaks is well documented. This success is due to the trilinear structure of these data under ideal, or sufficiently close to ideal, chromatographic conditions. However, using temperature programming to cope with the general elution problem, deviations from trilinearity within a run are more likely to be seen for the following three cases: (1) compounds (i.e., analytes) severely broadened on the first column hence defined by many modulation periods, (2) analytes with a very high retention factor on the second column and likely wrapped around in that dimension, or (3) with fast temperature program rates. This deviation from trilinearity is seen as retention time-shifted peak profiles in subsequent modulation periods (first column fractions). In this report, a relaxed yet powerful version of PARAFAC, known as PARAFAC2 has been applied to handle this shift within the model step by allowing generation of individual peak profiles in subsequent first column fractions. An alternative approach was also studied, utilizing a standard retention time shift correction to restore the data trilinearity structure followed by PARAFAC. These two approaches are compared when identifying and quantifying a known analyte over a large concentration series where a certain shift is simulated in the successive first column fractions. Finally, the methods are applied to real chromatographic data showing severely shifted peak profiles. The pros and cons of the presented approaches are discussed in relation to the model parameters, the signal-to-noise ratio and the degree of shift. 相似文献