共查询到13条相似文献,搜索用时 15 毫秒
1.
Junjie Ou Graham T.T. GibsonRichard D. Oleschuk 《Journal of chromatography. A》2010,1217(22):3628-3634
A novel porous polymer monolith was prepared in situ in a fused-silica capillary using photoinitiated polymerization. Bisphenol A dimethacrylate (BPADMA) was selected as a crosslinker, copolymerized with benzyl methacrylate (BMA) in the presence of a binary porogenic solvent consisting of cyclohexanol and 1-decanol in ≤10 min. The resulting poly(BMA-co-BPADMA) monoliths exhibited good permeability and mechanical stability. Mixtures of alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs) or phenolic compounds were successfully separated by CEC. A similar monolith was also prepared with ethylene dimethacrylate (EDMA) as the crosslinker instead of BPADMA to compare the separation ability of the resulting monoliths. The results indicated that poly(BMA-co-BPADMA) monoliths have better selectivity for aromatic analytes and greater chromatographic stability in higher aqueous mobile phase. 相似文献
2.
Smirnov KN Dyatchkov IA Telnov MV Pirogov AV Shpigun OA 《Journal of chromatography. A》2011,1218(30):5010-5019
Porous poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monoliths were synthesized via thermally initiated free-radical polymerization in confines of surface-vinylized glass columns (150 mm × 3 mm i.d.) and applied to the reversed-phase separation of low-molecular-weight aromatic compounds. In order to compensate for the polymer shrinkage during the synthesis and prevent the monolith from detachment from the column wall, polymerization was conducted under nitrogen pressure. The reaction proceeded at 60°C for 22 h. 2,2'-Azo-bis-isobutironitrile was used as the initiator and 1-dodecanol was used as the porogen. A series of monoliths with different monomer ratios were obtained. All the monoliths had high specific surface areas ranging from 370 to 490 m(2)/g. In the studied range of monomer mixture compositions, the mechanical stability of the stationary phase in water/acetonitrile eluents was found to be high enough and practically insensitive to the fraction of 2-hydroxyethyl methacrylate (HEMA). Increasing the molar fraction of HEMA from 10.5% to 14.7% resulted in the decrease of column permeability by two orders of magnitude (from 1.1×10(-12) to 1.8×10(-14) m(2)) and led to weaker retention of alkylbenzenes. The higher HEMA content was shown to reduce the plate height of the columns in the separation of small molecules from 160-490 μm to 40-76 μm. This was attributed mainly to the decrease of the domain size of the monoliths leading to lower eddy dispersion and mass transfer resistance in the column. 相似文献
3.
Multiwalled carbon nanotubes have been entrapped in monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns to afford stationary phases with enhanced liquid chromatographic performance for small molecules in the reversed phase. While the column with no nanotubes exhibited an efficiency of only 1800 plates/m, addition of a small amount of nanotubes to the polymerization mixture increased the efficiency to over 15,000 and 35,000 plates/m at flow rates of 1 and 0.15 μL/min, respectively. Alternatively, the native glycidyl methacrylate-based monolith was functionalized with ammonia and, then, shortened carbon nanotubes, bearing carboxyl functionalities, were attached to the pore surface through the aid of electrostatic interactions with the amine functionalities. Reducing the pore size of the monolith enhanced the column efficiency for the retained analyte, benzene, to 30,000 plates/m at a flow rate of 0.25 μL/min. Addition of tetrahydrofuran to the typical aqueous acetonitrile eluents improved the peak shape and increased the column efficiency to 44,000 plates/m calculated for the retained benzene peak. 相似文献
4.
In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate–MAA ratios were investigated to prepare a series of 30% alkyl methacrylate–MAA–EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. 相似文献
5.
Frederik Detobel Ken Broeckhoven Joke Wellens Bert Wouters Remco Swart Mario Ursem Gert Desmet Sebastiaan Eeltink 《Journal of chromatography. A》2010,1217(18):3085-3090
An experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 °C a small C-term effect was observed in a flow rate range of 1–4 μL/min. However, the C-term effect on peak width is not as strong as the decrease in peak width due to increasing flow rate. The peak capacity increased according to the square root of the column length. Decreasing the macropore size of the polymer monolith while maintaining the column length constant, resulted in an increase in peak capacity. A trade-off between peak capacity and total analysis time was made for 50, 100, and 250 mm long monolithic columns and a microparticulate column packed with 5 μm porous silica particles while operating at a flow rate of 2 μL/min. The peak capacity per unit time of the 50 mm long monolithic column with small pore size was superior when the total analysis time is below 120 min, yielding a maximum peak capacity of 380. For more demanding separations the 250 mm long monolith provided the highest peak capacity in the shortest possible time frame. 相似文献
6.
Monolithic polymers with an unprecedented surface area of over 600 m(2)/g have been prepared from a poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) precursor monolith that was swollen in 1,2-dichloroethane and hypercrosslinked via Friedel-Crafts reaction catalyzed by ferric chloride. Both the composition of the reaction mixture used for the preparation of the precursor monolith and the conditions of the hypercrosslinking reaction have been varied using mathematical design of experiments and the optimized system validated. Hypercrosslinked monolithic capillary columns contain an array of small pores that make the column ideally suited for the high efficiency isocratic separations of small molecules such as uracil and alkylbenzenes with column efficiencies reproducibly exceeding 80,000 plates/m for retained compounds. The separation process could be accelerated while also improving peak shape through the use of higher temperatures and a ternary mobile phase consisting of acetonitrile, tetrahydrofuran, and water. As a result, seven compounds were well separated in less than 2 min. These columns also facilitate separations of peptide mixtures such as a tryptic digest of cytochrome c using a gradient elution mode which affords a sequence coverage of 93%. A 65 cm long hypercrosslinked capillary column used in size exclusion mode with tetrahydrofuran as the mobile phase afforded almost baseline separation of toluene and five polystyrene standards. 相似文献
7.
The phase diagram of blends of poly(vinylidene fluoride) and poly (ethyl acrylate) was established by X-ray scattering, optical microscopy and calorimetric techniques. Structure formation, involving phase separation and coarsening was analyzed as a function of temperature variations and annealing times. The variations consisted of increasing or decreasing the temperature stepwise, starting either in the one-phase or in the two-phase state of the melt.Dedicated to Prof. R. Bonart (Univ. Regensburg) on the occasion of his 60th birthday 相似文献
8.
Andreas Greiderer Lukas TrojerChristian W. Huck Günther K. Bonn 《Journal of chromatography. A》2009,1216(45):7747-7754
In order to elucidate the effect of the polymerisation time on the morphology of styrene based monolithic support materials, continuous poly(1,2-bis(p-vinylphenyl))ethane (BVPE) rods were synthesised in 1.0 ml glass vials by thermally initiated free radical polymerisations of BVPE in the presence of porogens (toluene, decanol) and a,a′-azoisobutyronitrile (AIBN) as initiator at 65 °C for different polymerisation times (60, 90, 150, 300 and 600 min). Porosity parameters like pore-size-distribution and total porosity were investigated by mercury intrusion porosimetry, while the specific surface area of the BVPE monolithic supports was determined by N2-adsorption (BET) measurements. An untypical bimodal pore-size-distribution comprising a high fraction of both mesopores (2–50 nm) and macropores (mainly flow-channels in the micrometer range) was observed as a result of the stepwise decrease of the polymerisation time. In consequence of the significant changes of the pore-size-profile, shortening the polymerisation time also resulted in enhanced total porosity due to enlarged flow-channel diameters and increased surface area according to the presence of a considerable amount of mesopores. Results upon the porosity profile of the support are further confirmed by SEM images of monoliths polymerised for different time periods. Since mesoporosity and high surface area of the chromatographic support material play key roles in the interaction and thus retention of low-molecular-weight compounds, polymerisation time should also affect the chromatographic properties and applicability of these polymers. To study the influence of the polymerisation time towards the separation efficiency of small molecules on BVPE capillary columns (200 μm I.D., 8 cm), a mixture of homologous alkylbenzenes was chosen for column evaluation. In accordance with the observations of the porous properties of BVPE stationary phases, the rapid and high resolution separation of a range of low-molecular-weight compounds on monolithic BVPE supports were successfully realised. The methodical reduction of the polymerisation time has been demonstrated to be a simple and effective tool to tailor the porous properties of organic monoliths to provide novel polymer-based stationary phases with porous properties adequate for the rapid and high resolution chromatography of small organic molecules. 相似文献
9.
Wasura Soonthorntantikul Natchanun Leepipatpiboon Tohru Ikegami Nobuo Tanaka Thumnoon Nhujak 《Journal of chromatography. A》2009,1216(31):5868-5874
Stationary phase selectivities for halogenated compounds in reversed-phase HPLC were compared using C18 monolithic silica capillary columns modified with poly(octadecyl methacrylate) (ODM) and octadecyl moieties (ODS). The preferential retention of halogenated benzenes on ODM was observed in methanol/water and acetonitrile/water mobile phases. In selectivity comparison of selected analytes on ODM and ODS, greater selectivities for halogenated compounds were obtained with respect to alkylbenzenes on an ODM column, while similar selectivities were observed with a homologous series of alkylbenzenes on ODM and ODS columns. These data can be explained by greater dispersive interactions by more densely packed octadecyl groups on the ODM polymer coated column together with the contribution of carbonyl groups in ODM side chains. For the positional isomeric separation of dihalogenated benzenes (ortho-, meta-, para-), the ODM column also provided better separation of these isomers for the adjacently eluted isomers that cannot be completely separated on an ODS column in the same mobile phase. These results imply that the ODM column can be used as a better alternative to the ODS column for the separation of other halogenated compounds. 相似文献
10.
Xiaojia Huang Jianbin Lin Dongxing Yuan Rongzong Hu 《Journal of chromatography. A》2009,1216(16):3508-3511
In this study, a simple and rapid method was developed for the determination of seven steroid hormones in wastewater. Sample preparation and analysis were performed by stir bar sorptive extraction (SBSE) based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material (SBSEM) combined with high-performance liquid chromatography with diode array detection. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix, were investigated. Under the optimized experimental conditions, the method showed good linearity and repeatability, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The extraction performance of SBSEM to the target compounds also compared with commercial SBSE which used polydimethylsiloxane as coating. Finally, the proposed method was successfully applied to the determination of the target compounds in wastewater samples. The recoveries of spiked target compounds in real samples ranged from 48.2% to 110%. 相似文献
11.
Sadahito Aoshima Hiroshi Oda Eiichi Kobayashi 《Journal of polymer science. Part A, Polymer chemistry》1992,30(11):2407-2413
Living cationic polymerization of alkoxyethyl vinyl ether [CH2?CHOCH2CH2OR; R: CH3 (MOVE), C2H5 (EOVE)] and related vinyl ethers with oxyethylene units in the pendant was achieved by 1-(isobutoxy)ethyl acetate ( 1 )/Et1.5AlCl1.5 initiating system in the presence of an added base (ethyl acetate or THF) in toluene at 0°C. The polymers had a very narrow molecular weight distribution (M?w/M?n = 1.1–1.2) and the M?n proportionally increased with the progress of the polymerization reaction. On the other hand, the polymerization by 1 /EtAlCl2 initiating system in the presence of ethyl acetate, which produces living polymer of isobutyl vinyl ether, yielded the nonliving polymer. When an aqueous solution of the polymers thus obtained was heated, the phase separation phenomenon was clearly observed in each polymer at a definite critical temperature (Tps). For example, Tps was 70°C for poly(MOVE), and 20°C for poly(EOVE) (1 wt % aqueous solution, M?n ~ 2 × 104). The phase separation for each case was quite sensitive (ΔTps = 0.3–0.5°C) and reversible on heating and cooling. The Tps or ΔTps was clearly dependent not only on the structure of polymer side chains (oxyethylene chain length and ω-alkyl group), but also on the molecular weight (M?n = 5 × 103-7 × 104) and its distribution. © 1992 John Wiley & Sons, Inc. 相似文献
12.
Gamma-irradiation was found to affect the physicochemical properties of dry red kidney beans. The highest dose used (8 kGy) significantly (P0.05) modified the extent of deamidation, the number of sulfhydryl groups, as well as the solubility and the hydrophobicity of the protein. Deamidation, protein solubility and hydrophobicity all increased with the irradiation dose while the number of sulfhydryl groups was reduced by the treatment. Furthermore, irradiation also affected the outgrowth of natural filamentous fungi contaminants present on the dry beans. A dose of 1.5 kGy reduced the number of filamentous fungi by 2 log cycles immediately after treatment. However, the highest dose used (3 kGy) did not eliminate the filamentous fungi completely. Moreover, the filamentous fungi population was a lot less diversified on the irradiated samples. Species of Aspergillus sp. and Penicillium sp. were more abundant on the unirradiated beans while the beans irradiated at 3 kGy contained were predominantly infected by species of Rhizopus sp. , Cladosporium sp. and Alternaria sp. 相似文献
13.
Marina Galia Frantisek Svec Jean M. J. Frechet 《Journal of polymer science. Part A, Polymer chemistry》1994,32(11):2169-2175
The effect of concentration of divinylbenzene on pore size distribution and surface areas of micropores, mesopores, and macropores in uniformly sized porous poly(styrene-co-divinylbenzene) beads prepared in the presence of linear polystyrene as a component of the porogenic mixture has been studied. While the total specific surface area was clearly determined by the content of divinylbenzene, the sum of pore volumes for mesopores and macropores as well as their size distribution does not change within a broad range of DVB concentrations. Consequently, the size exclusion chromatography calibration curves are almost identical for all the beads prepared with different percentages of crosslinking monomer. However, the more crosslinked beads have better mechanical and hydrodynamic properties. © 1994 John Wiley & Sons, Inc. 相似文献