首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
An environmentally friendly methodology has been developed for quality control analysis of emulsifiable concentrate pesticide formulations containing Malathion as active ingredient, using flow injection analysis (FIA)-Fourier transform infrared (FTIR) spectrometry. Five microlitres samples were directly injected into a 3 ml closed FIA manifold, in which 2 ml of CHCl3 was re-circulated at 1.96 ml min−1. After homogenisation and sample measurement, 2 μl volumes of a Malathion standard were injected, taking absorbance measurements after each injection. Peak height of the chemigrams, established from peak area values between 1027 and 1017 cm−1, corrected with a baseline fixed from 1087 to 993 cm−1 were employed for Malathion quantification using the standard addition approach, after reaching the steady state for every injection. A limit of detection of 12 μg ml−1 was achieved. Results found by standard addition-FTIR in commercially available samples showed a good correlation with those obtained by the reference gas chromatography-flame ionisation detection procedure.  相似文献   

2.
Potentiometric FIA titrations were performed to determine enzyme activities of lipase type B from Candida antarctica, CAL-B. Two substrates, triacetin and tributyrin were hydrolyzed in phosphate buffer solutions, and the concentration change of the base component of the buffer was titrated in a carrier solution containing hydrochloric acid and potassium chloride. The system was calibrated with butyric acid and acetic acid, respectively. FIA titration peaks were evaluated with respect to peak height and peak area. Butyric acid and acetic acid could be titrated in the buffer solution from 3 × 10−3 mol L−1 to 0.1 mol L−1. The detection limit of enzyme activity was determined to be 0.07 U mL−1 (15 min reaction time) and the minimum activity was calculated to be 0.035 units corresponding to 35 nmol min−1. The specific activities of lipase B for the hydrolysis of tributyrin and triacetin were determined as 16 ± 2 U mg−1 and 2 ± 0.2 U mg−1 (per mg commercial lipase preparation), respectively.  相似文献   

3.
Xu D  Liu S  Liu Z  Hu X 《Analytica chimica acta》2007,588(1):10-15
A flow injection analysis (FIA) method coupled to resonance Rayleigh scattering (RRS) detection for the determination of verapamil hydrochloride (VP) was proposed. In pH 1.0 acidic medium, 12-tungstophosphoric acid (TP) reacted with VP to form an ion-association complex, which resulted in a significant enhancement of RRS intensity. The maximum scattering peak was located at 293 nm. RRS intensity was proportional to the concentration of VP in the range of 0.017-13.0 μg mL−1, and the detection limit (3σ) was 5.1 ng mL−1. The proposed method exhibited satisfactory reproducibility with a relative standard derivation (R.S.D.) of 2.1% for 11 successive determinations of 5.0 μg mL−1 VP. Therefore, a novel method for the determination of VP by FIA-RRS was developed. The optimum reaction conditions and the parameters of the FIA operation such as flow rate, injection volume, reactor length, and so on had been optimized in this paper. The present method had been applied to the determination of VP in serum samples and pharmaceuticals with satisfactory results. The maximal sample throughput in the optimized system was 80 h−1.  相似文献   

4.
A simple and reliable FIA-potentiometric system for rapid assays of chloride in certain food samples is described and evaluated. The system is constituted by an aquarium air pump to propel the carrier solution, a manually operated injector, a homemade dialysis flow cell, a solid-state chloride detector (Ag/AgCl), a reference electrode and a multimeter connected to a microcomputer for data acquisition. The dialysis unit enables direct analysis of liquid food samples without any other previous treatment. The principal novelties are the precision (R.S.D. of 1.2% for whole milk) and rapidity (90 determinations/h) of FIA measurements near and below the lower end of the linear (Nernstian) response region of the chloride ion-selective electrode (ISE), with an estimated detection limit (3 s) of 0.4 mg L−1 Cl in the sample injected in donor stream. Data of peak potential versus sample chloride concentration (donor stream) was accurately fitted with a quadratic polynomial over the range between 4 and 1000 mg L−1 (r2 = 0.9999) and used as a calibration curve. The method was applied to the determination of chloride in milk and in coconut water samples. The validation of the results was done by comparison with a NIST reference material (milk) or by capillary electrophoresis (coconut water). For all analysis, no significant difference at a 95% confidence level was observed.  相似文献   

5.
Two new flow methods, flow injection analysis (FIA) and sequential injection analysis (SIA), for the spectrophotometric determination of Cu(II) in water at trace levels have been developed and optimised. Both methods are based on the reaction with oxalic acid bis(cyclohexylidene hydrazide) (cuprizone) in alkaline media. The two procedures have been developed for the final aim to compare their performances and to offer new rapid heavy metals analysis tools, avoiding the use of extraction steps. A detailed study of the physico-chemical parameters affecting the systems performances has been carried out. The reversed FIA and sandwich SIA approaches offered the best sensitivity. In both cases, an extremely good linearity has been obtained within the range 0.06-4 μg ml−1 (correlation coefficient r=0.9999), whereas the observed detection limits were 0.013 and 0.004 μg ml−1, for FIA and SIA, respectively. Furthermore, due to the great similarity of the diffusion zones in the reaction slugs, our approach offers the opportunity to compare the two methods in analogous conditions. This SIA method, besides keeping its typical reagent saving features, offered analytical performances equivalent to those of FIA. To obtain these results, an original “stop-flow like” method was successfully employed in the SIA approach. Both methods were validated by analysis of real water samples, after copper addition, and certified reference samples of fortified and waste waters.  相似文献   

6.
Boni AC  Wong A  Dutra RA  Sotomayor Mdel P 《Talanta》2011,85(4):2067-2073
A biomimetic sensor for the determination of dipyrone was prepared by modifying carbon paste with cobalt phthalocyanine (CoPc), and used as an amperometric detector in a flow injection analysis (FIA) system. The results of cyclic voltammetry experiments suggested that CoPc behaved as a biomimetic catalyst in the electrocatalytic oxidation of dipyrone, which involved the transfer of one electron. The optimized FIA procedure employed a flow rate of 1.5 mL min−1, a 75 μL sample loop, a 0.1 mol L−1 phosphate buffer carrier solution at pH 7.0 and amperometric detection at a potential of 0.3 V vs. Ag/AgCl. Under these conditions, the proposed method showed a linear response for dipyrone concentrations in the range 5.0 × 10−6-6.3 × 10−3 mol L−1. Selectivity and interference studies were carried out in order to validate the system for use with pharmaceutical and environmental samples. In addition to being environmentally friendly, the proposed method is a sensitive and selective analytical tool for the determination of dipyrone.  相似文献   

7.
Sohn OJ  Han KA  Rhee JI 《Talanta》2005,65(1):185-191
In this study, a flow injection analysis (FIA) system using a cartridge of immobilized isocitrate lyase (ICL) and isocitrate dehydrogenase (ICDH) was developed to monitor the concentrations of succinic acid in biotechnological processes. The ICL and ICDH immobilized on VA-Epoxy Biosynth E3-carrier had a good operational lifetime (up to 24 h) and storage stability (up to 30 days). The FIA system with the immobilized ICL/ICDH cartridge was characterized with respect to the factors affecting the activity of the immobilized enzymes, such as pH of carrier solution, temperature, sample matrix, etc. Optimal pH value of the immobilized enzymes was slightly shifted in the alkaline range, i.e. 9.0. Some components such as 10 g l−1 lactose, 3 g l−1 malate and 3 g l−1 oxaloacetate in sample solution had significant activating effects (more than 10%) on the response of the FIA system. But the activity of the immobilized ICL and ICDH was not largely influenced by some components like imidazole (1 mM), sodium azide (10 mM) and semicarbazide (2 g l−1) added to carrier buffer solution. The FIA system with an enzyme cartridge was applied to on-line monitor the concentrations of succinic acid in a continuously stirred reactor and a fermentation process of immobilized Escherichia coli, and showed good sensitivity and reliability of the FIA system developed in this work.  相似文献   

8.
A flow injection analysis (FIA) procedure for the determination of anisidine value (AV) in palm olein using a triiodide detector is described. Undiluted oil sample and chloramine-T reagent were added to a reaction chamber, and reaction was accelerated by applying a short vortex action (typically for 30 s). After allowing the emulsified oil phase to be separated from the aqueous phase (bottom layer), an aliquot of the aqueous phase (containing unreacted chloramine-T) was aspirated into a carrier stream that contained I where the chloramine-T oxidized the I to form I3 which was finally detected by a flow-through triiodide potentiometric detector. Variables that affect the FIA signals such as size of the reaction chamber, oil and reagent flow rates, chloramine-T concentration, vortex time, time for phase separation, carrier stream pH and injected volume were studied. The optimized FIA procedure is linear over 1.0-23.0 AV. The method exhibits good repeatabililty (R.S.D. of ±3.16% (n = 4) for the determination of 5.0 AV) and a sampling rate of 40 samples per hour was achieved. Good correlation (r2 = 0.996 (n = 4)) between the proposed method and the manual American Oil Chemists’ Society procedure was found when applied to the determination of twenty different types of palm olein samples.  相似文献   

9.
A flow injection analysis (FIA) method for the determination of peroxide value (PV) in edible oils is described. Oil sample (undiluted) and KI reagent were aspirated into a homemade reaction chamber where the redox reaction between iodide in the aqueous phase and hydroperoxides in the oil was effected by applying a short (typically 30 s) vortex action. After allowing for the emulsified oil phase to be separated from the aqueous phase (bottom layer), an aliquot of the aqueous phase containing triiodide was next aspirated to the surface of a triiodide-selective membrane for detection. The optimized FIA procedure is linear over 0.35-28.0 PV (mequiv. O2/kg) with a detection limit of 0.32 PV. Exhibiting good reproducibility (R.S.D. of 2.7% (n = 8) for the determination of 1.1 PV) and sampling rate of 80 samples h−1, the proposed method, unlike previous FIA procedures, completely eliminated the use of organic solvents (except the use of 2-propanol for cleaning of reaction chamber). Excellent correlation (R2 = 0.9949) between the proposed method and the manual official AOCS method was found when applied to the determination of PV in diverse type of edible oils (n = 20).  相似文献   

10.
Tsukatani T  Matsumoto K 《Talanta》2006,69(3):637-642
A flow-injection system for the quantification of pyruvate based on the coupled reactions of pyruvate decarboxylase (PDC) and aldehyde dehydrogenase (AlDH) was conceived and optimized. A co-immobilized PDC and AlDH reactor was introduced into the flow line. Sample and reagent (NAD+) were injected into the flow line by an open sandwich method and the increase of NADH produced by the immobilized-enzyme reactor was monitored fluorometrically at 455 nm (excitation at 340 nm). Linear relationships between the responses and concentrations of pyruvate were observed in the ranges of 2.0 × 10−5 to 1.5 × 10−3 M at the flow rate of 1.0 ml min−1 and 5.0 × 10−6 to 1.0 × 10−3 M at the flow rate of 0.5 ml min−1. The relative standard deviation for 10 successive injections was 0.95% at the 1.0 mM level. This FIA system for pyruvate was applied to the measurement of acetate, citrate and l-lactate.  相似文献   

11.
The effect of adding alkali salts to protein samples for capillary electrophoretic (CE) analysis of intact proteins was studied. A high degree of peak stacking, even for large proteins, was found to occur when alkali salts were added to the sample. The addition of salt to the protein sample promotes a strong improvement in the peak efficiency of individual proteins giving up to 2.1 × 106 apparent plates/m. The concentration of salt required in the sample to reach optimal peak efficiency show dependency on both the molecular weight and molar concentration of the protein. However, adding salt will, at a sufficiently high concentration, cause a mixture of proteins to co-migrate to one very sharp peak. The observed sample stacking effect was obtained with a number of different surface modified silica capillaries indicating a general phenomenon and not surface coating specific.  相似文献   

12.
Two miniature and compact optoelectronic devices fabricated by means of integration of light emitting diodes have been developed for turbidimetric and nephelometric measurements. These devices are operating according to paired-emitter-detector-diode (PEDD) principle. The detectors have been characterized using bovine serum albumin and Exton protein assay as a model analyte and a model analytical method, respectively. The developed detectors have been adapted for measurements under conditions of flow injection analysis (FIA). Under optimized conditions the turbidimetric flow system offers the range of linear response up to 400 mg L−1 with the detection limit at 20 mg L−1. The linear range and detection limit found for optimized nephelometric FIA system are 15–500 mg L−1 and 8 mg L−1, respectively. The PEDD-based FIA systems with the detector operating according to both modes of measurements have been successfully applied for urinalysis offering total protein determination at physiological and pathological levels with high throughput (over 60 injections per hour).  相似文献   

13.
A method for the determination of uranium and radium isotopes in water samples is proposed. Liquid scintillation techniques were used for collecting alpha spectra, which were then analyzed by fitting the alpha peaks with overlapping Gaussians. The analysis can quantify the observed isotopes with accuracy depending on the activity of each isotope.In order to simulate the peaks with Gaussian normal distribution functions, the centroid of each peak as well as the full width at half maximum (FWHM) are required, as they depend on the quenching of the sample. For this purpose, samples with known activities of 226Ra and its decay products and also of the uranium isotopes 238U and 234U, at various quenching levels, were used to establish the correlation of the peaks’ shift with the quench effect. In addition, the correlation of the FWHM with the centroid of a peak was determined, using the same procedure.Following the above analysis technique, an average of 97 ± 2% of detection efficiency and a lower limit of detection of 8.2 mBq kg−1 for alpha isotopes were achieved.  相似文献   

14.
Poachanee Norfun 《Talanta》2010,82(1):202-207
A reverse flow injection analysis (rFIA) spectrophotometric method has been developed for the determination of aluminium(III). The method was based on the reaction of Al(III), quercetin and cetyltrimethylammonium bromide (CTAB), yielding a yellow colored complex in an acetate buffer medium (pH 5.5) with absorption maximum at 428 nm. The rFIA parameters that influence the FIA peak height have been optimized in order to obtain the best sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and Al(III) concentrations were obtained over the concentration range of 0.02-0.50 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.007 and 0.024 mg L−1, respectively. The repeatability was 1.10% (n = 11) for 0.2 mg L−1 Al(III). The proposed method was applied to the determination of Al(III) in tap water samples with a sampling rate of 60 h−1. Results obtained were in good agreement with those obtained by the official ICP-MS method at the 95% confidence level.  相似文献   

15.
A simple yet sensitive method is developed for the determination of sericin using voltammetry based on the interaction between sericin and carmine for the first time. In the absence of sericin, carmine has a pair of well-defined redox peaks in a pH 1.81 Britton-Robinson buffer solution. Although no new redox peaks appear upon the addition of sericin into a carmine solution, the peak currents of the old peaks reduce while the peak potentials shift positively. This observation is attributed to the decrease in the diffusion coefficient and electrode reaction rate constant of carmine in the presence of sericin. A binding mechanism is proposed and discussed, and the binding constant and binding ratio are calculated as 2.32 × 106 L mol−1 and 1:1, respectively. Furthermore, the decrease in the peak currents is found proportional to the sericin concentration in the range of 32.0-800.0 μg mL−1 with a detection limit of 13.52 μg mL−1. The method is further applied to the determination of sericin in degumming wastewater with satisfied average recoveries from 96.7 to 103.3%. The results are in good agreement with those obtained by the conventional Coomassie brilliant blue G-250 spectrophotometric method.  相似文献   

16.
Daniel D  Gutz IG 《Talanta》2005,68(2):429-436
Microfluidic flow cells combined with an interdigitated array (IDA) electrode and/or individually driven interdigitated electrodes were fabricated and characterized for application as detectors for flow injection analysis. The gold electrodes were produced by a process involving heat transfer of a toner mask onto the gold surface of a CD-R and etching of the toner-free gold region by short exposure to iodine-iodide solution. The arrays of electrodes with individual area of 0.01 cm2 (0.10 cm of length × 0.10 cm of width and separated by gaps of 0.05 or 0.03 cm) were assembled in microfluidic flow cells with 13 or 19 μm channel depth. The electrochemical characterization of the cells was made by voltammetry under stationary conditions and the influence of experimental parameters related to geometry of the channels and electrodes were studied by using K4Fe(CN)6 as model system. The obtained results for peaks currents (Ip) are in excellent agreement with the expected ones for a reversible redox system under stationary thin-layer conditions. Two different configurations of the working electrodes, Ei, auxiliary electrode, A, and reference electrode, R, on the chip were examined: Ei/R/A and R/Ei/A, with the first presenting certain uncompensated resistance. This is because the potentiostat actively compensates the iR drop occurring in the electrolyte thin layer between A and R, but not from R to each Ei. This is confirmed by the smaller difference between the cathodic and anodic peak potentials for the second configuration. Evaluation of the microfluidic flow cells combined with (individually driven) interdigitated array electrodes as biamperometric or amperometric detectors for FIA reveals stable and reproducible operation, with peak heights presenting relative standard deviations of less than 2.2%. For electrochemically reversible species, FIA peaks with enhanced current signal were obtained due to redox cycling under flow operation. The versatility of microfluidic flow cells, produced by simple and low-cost technique, associated with the rich information content of electrochemical techniques with arrays of electrodes, opens many future research and application opportunities.  相似文献   

17.
Gui-Fen Jie 《Talanta》2007,71(4):1476-1480
Electrogenerated chemiluminescence (ECL) of CdS nanotubes in aqueous solution and its sensing application were studied by entrapping the CdS nanotubes in carbon paste electrode. Two ECL peaks were observed at −0.9 V (ECL-1) and −1.2 V (ECL-2), respectively, when the potential was cycled between 0 and −1.6 V. The electrochemically reduced nanocrystal species of CdS nanotubes could collide with the oxidized species in an annihilation process to produce the peak of ECL-1. The electron-transfer reaction between the reduced CdS nanocrystal species and oxidant coreactants such as S2O82−, H2O2, and reduced dissolved oxygen led to the appearance of the ECL-2 peak. Based on the enhancing effect of H2O2 on ECL-2 intensity, a novel CdS ECL sensor was developed for H2O2 detection. The sensor exhibited a detection limit of 0.1 μM and a linear range from 0.5 μM to 0.01 mM. The relative standard deviations of five replicate determinations of 5 μM H2O2 was 2.6%. In addition, the ECL spectrum in aqueous solution also exhibited two peaks at 500 and 640 nm, respectively.  相似文献   

18.
A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g−1 and the relative standard deviation (R.S.D.) for 10 replicates at 10 μg L−1 Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 μg g−1.  相似文献   

19.
A long-life capillary enzyme bioreactor was developed that determines glucose concentrations with high sensitivity and better stability than previous systems. The bioreactor was constructed by immobilizing glucose oxidase (GOx) onto the inner surface of a 0.53 mm i.d. fused-silica capillary that was part of a continuous-flow system. In the presence of oxygen, GOx converts glucose to gluconic acid and hydrogen peroxide (H2O2). Hydrogen peroxide detection was accomplished using an amperometric electrochemical detector. The integration of this capillary reactor into a flow-injection (FIA) system offered a larger surface-to-volume ratio, reduced band-broadening effects, and reduced reagent consumption compared to packed column in FIA or other settings. To obtain operational (at ambient temp) and storage (at 4 °C) stability for 20 weeks, the glucose biosensing system was prepared using an optimal GOx concentration (200 mg/mL). This exhibited an FIA peak response of 7 min and a detection limit of 10 μM (S/N = 3) with excellent reproducibility (coefficient of variation, CV < 0.75%). It also had a linear working range from 101 to 104 μM. The enzyme activity in this proposed capillary enzyme reactor was well maintained for 20 weeks. Furthermore, 20 serum samples were analyzed using this system, and these correlated favorably (correlation coefficient, r2 = 0.935) with results for the same samples obtained using a routine clinical method. The resulting biosensing system exhibited characteristics that make it suitable for in vivo application.  相似文献   

20.
Application of interdigitated array microelectrodes as electrochemical sensors for determination of antioxidant capacity is reported. Electrochemical measurements with interdigitated electrodes (IDE) were studied in both stationary solutions and the flow system. The method is based on biamperometric measurements using ABTS+|ABTS redox couple in phosphate buffer solution, pH 7.40. During analysis, the ABTS radical cation was enzymatically produced by peroxidase in a tubular flow-through reactor. The performance of bioreactor was tested at different concentrations of immobilized enzyme, ABTS and hydrogen peroxide. The influence of flow rate on proper operation of the bioreactor was also studied. The results of antioxidant activity were determined using Trolox as a standard. The applied IDE detector accomplished good sensitivity of 0.3 nA/μM of Trolox and offered linear range between 20 to 500 μM of Trolox.The comparison of results (R2 = 0.9915) for antioxidant activity between spectroscopic and FIA biamperometric measurements by interdigitated electrodes confirmed the applicability of the proposed method for determination of antioxidant capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号