首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper describes the development of an optimized method based on solid-phase extraction (SPE) followed by liquid chromatography–electrospray ionization tandem mass spectrometry (LC–MS/MS) for the simultaneous analysis of ten antibiotic compounds including tetracyclines, sulfonamides, macrolides and quinolones. LC–MS/MS sensitivity has been optimized by alterations to both LC and MS operations. Of the two high resolution columns tested, Waters Symmetry C18 endcapped and Agilent Zorbax Bonus-RP, the latter was found to show better performance in producing sharp peaks and clear separation for most of the target compounds. Optimization of the MS fragmentation collision and cone energy enhanced the peak areas of the target analytes. The recovery of the target compounds from water samples was most efficient on Waters Oasis HLB SPE cartridge, while methanol was shown to be the most suitable solvent for desorbing the compounds from SPE. In addition, acidification of samples prior to SPE was shown to enhance the recovery of the compounds. To ensure a satisfactory recovery, the flow rate through SPE should be maintained at ≤10 mL min−1. The method was successfully applied to the analysis of antibiotics from environmental water samples, with concentrations being <LOD in tap water, between <LOD to 28 ng L−1 in river water and between <LOD to 230 ng L−1 in sewage effluent.  相似文献   

3.
Pteridines are a diverse family of endogenous metabolites that may serve as useful diagnostic biomarkers for disease. While many preparative and analytical techniques have been described for analysis of selected pteridines in biological fluids, broad intracellular pteridine detection remains a significant analytical challenge. In this study, a novel, specific and sensitive extraction and high performance liquid chromatography–quadrupole time-of-flight mass spectrometry (HPLC–QTOF MS) method was developed to simultaneously quantify seven intracellular pteridines and monitor 18 additional, naturally-occurring intracellular pteridines. The newly developed method was validated through evaluation of spiked recoveries (84.5–109.4%), reproducibility (2.1–5.4% RSD), method detection limits (0.1–3.0 μg L−1) and limits of quantitation (0.1–1 μg L−1), and finally application to non-small cell lung cancer A549 cells. Twenty-three pteridine derivatives were successfully detected from cell lysates with an average RSD of 12% among culture replicates. Quantified intracellular pteridine levels ranged from 1 to 1000 nM in good agreement with previous studies. Finally, this technique may be applied to cellular studies to generate new biological hypotheses concerning pteridine physiological and pathological functions as well as to discovery new pteridine-based biomarkers.  相似文献   

4.
We have developed a method using on-line solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry (SPE-HPLC-MS/MS) and isotope dilution quantification to measure atrazine and seven atrazine metabolites in urine. The metabolites measured were hydroxyatrazine, diaminochloroatrazine, desisopropylatrazine, desethylatrazine, desethylatrazine mercapturate, atrazine mercaturate and atrazine itself. Our method has good precision (relative standard deviations ranging from 4 to 20% at 5, 10 and 50 ng/mL), extraction efficiencies of 67 to 102% at 5 and 25 ng/mL, relative recoveries of 87 to 112% at 5, 25, 50 and 100 ng/mL limits of detection (LOD) ranging from 0.03 to 2.80 ng/mL. The linear range of our method spans from the analyte LOD to 100 ng/mL (40 ng/mL for atrazine and atrazine mercapturate) with R 2 values of greater than 0.999 and errors about the slope of less than 3%. Our method is rapid, cost-effective and suitable for large-scale sample analyses and is easily adaptable to other biological matrices. More importantly, this method will allow us to better assess human exposure to atrazine-related chemicals. Figure A schematic representation showing the elution of the analytes from the solid-phase extraction cartridge onto the analytical column for chromatographic separation prior to MS/MS analysis  相似文献   

5.
ABSTRACT

Gynura procumbens is commonly consumed as a vegetable and has been approved as an ingredient for food and dietary supplements in China. However, Gynura species are known to contain toxic pyrrolizidine alkaloids (PAs) and the PA profiles in G. procumbens are not known. This study was to extract and enrich PA from G. procumbens or health care products using PCX solid-phase extraction (SPE) cartridges identify the main PAs in the herb and to develop an liquid chromatography–mass spectrometry (LC-MS/MS) method for assaying the PA contents in the plant and its derived products. Upon using multiple reaction monitoring (MRM) acquisition together with comparison to the characteristics of mass fragmentations and retention times of reference standards, 11 PAs were identified as the main PAs in the plant. After clean-up and enrichment with PCX solid-phase extraction (SPE) cartridges, which resulted in better PA recoveries than either C18 or SCX cartridges, the LC-MS/MS method was subjected to validation in terms of linearity, repeatability, limits of quantification (LOQ) and recovery. The validated method was applied to quantify PAs in 12 plant samples and 7 commercial finished products. The total amounts of targeted PAs were found to vary from 15.6 to 848 μg/kg in the herbs and from 9.9 μg/kg to 33.9 mg/kg in the commercial products. The present work was the first to demonstrate that G. procumbens contained PAs in the herb and its derived products and the PA contents might exceed the daily dose limits in food and herbal medicinal products proposed by the European Medicines Agency (i.e. 0.35 μg PA per day for 50 kg adult).  相似文献   

6.
A gas chromatography–tandem mass spectrometry (GC–MS/MS) method has been developed for the determination of selected pharmaceutical residues (carbamazepine, salicylic acid, clofibric acid, ibuprofen, 2-hydroxy-ibuprofen, fenoprofen, naproxen, ketoprofen, diclofenac, and triclosan) in sewage influent and roughly primary-treated effluent. The method involved solid-phase extraction (SPE) with polymeric sorbents, and two SPE cartridges were compared for the extraction and elution of the targeted compounds in complex matrices. A successful chemical derivatization of carbamazepine and acidic compounds using N,O-bis(trimethylsilyl) trifluoroacetamide +10% trimethylchlorosilane is also described. The quantification limits of the analytical procedure ranged from 30 to 60?ng?L?1 for 500?mL of wastewater. The best recovery rates (72–102%) in spiked effluent samples were obtained with Phenomenex Strata-X? cartridges. Detection limits (S/N?=?3) were estimated at between 1 and 18?ng?L?1. The reported GC–MS/MS method significantly reduces the strong matrix effects encountered with more expensive LC-MS/MS techniques. Application of the developed method showed that most selected analytes were detected at concentrations ranging from low µg?L?1 to trace level ng?L?1 in Montreal's wastewater treatment plant effluent and influent, as well as in the receiving waters at more than 8?km downstream of the effluent outfall. The rugged alternative analytical method is suitable for the simultaneous analysis of carbamazepine and pharmaceutical acidic residues in wastewater samples from influents and effluents that have undergone rough primary treatment.  相似文献   

7.
A reliable multiclass method has been developed and validated for the determination of eight antibiotics from distinct classes (sulfonamides, macrolides, fluoroquinolones, tetracyclines, cephalosporins and dihydrofolate reductase inhibitors) in wastewater – influent and effluent – and surface water from Porto Alegre, Brazil. The pre-concentration and clean-up was conducted with a simple and fast protocol using solid-phase extraction allowing a 100-fold concentration factor. The proposed method was validated by using spiked blank wastewater samples in terms of linearity, repeatability, reproducibility, recovery, matrix effects and limits of detection and quantification. Recovery was obtained in the range of 66–149%. Method limit of quantification ranged between 1.6 and 61.7 ng L?1. Samples (n = 16) were taken from January to August 2011 in one wastewater treatment plant, which uses conventional biological treatment. Sulfamethoxazole and trimethoprim show higher concentration, ranging from >10 to <6500 ng L?1, whereas erythromycin presented the lower amount. Differences between influent and effluent profiles were discussed. Surface water samples (n = 8) were collected in Arroio Diluvio, in four sampling points, in February 2012. From the eight antibiotics analysed, five were detected: sulfamethoxazole, trimethoprim, azythromicyn, ciprofloxacin and norfloxacin, in a concentration range of 376–572 ng L?1, 27–94 ng L?1, 24–40 ng L?1, 16–66ng L?1 and 30–54 ng L?1, respectively.  相似文献   

8.
A solid-phase extraction (SPE) LC–MS/MS method for 18 commercial drugs in secondary wastewater and product water from water recycling plants using microfiltration (MF) and reverse osmosis (RO) has been developed, optimised and validated. The method incorporates a range of multi-class pharmaceuticals including lipid lowering agents, analgesics, antipyretics, non-steroidal anti-inflammatory drugs, antidepressants, anticoagulants, tranquilizers, cytostatic agents, and antiepileptics. Method limits of quantitation (MLQs) in secondary wastewater ranged from 15 to 250 ng/L, while MLQs in post-RO water ranged from 1 to 25 ng/L. Results from analysis of secondary wastewater from Western Australia are presented, and represent the largest survey of non-antibiotic pharmaceuticals within Australia to date. Analysis of post-RO water from two MF/RO water recycling facilities also demonstrate that MF/RO treatment removes most pharmaceuticals to below the analytical limits of detection, and more importantly, up to seven orders of magnitude below health-based guideline values.  相似文献   

9.
A method involving solid-phase extraction (SPE) and reversed-phase liquid chromatography–mass spectrometry (LC–MS) has been developed for determination, in groundwater, of nitrobenzoic acids associated with 2,4,6-trinitrotoluene production. Pre-concentration on a co-polymer-based SPE cartridge enabled quantitative extraction of the analytes from water. Investigation of negative ion electrospray and atmospheric-pressure chemical ionization mass spectrometry indicated the sensitivity of APCI was more than twice that of ESI. An 15N-labeled internal standard was used to achieve more accurate quantitation and mass assignment. Recovery was better than 80% when 10 mL water was extracted with the SPE cartridge. Combination of SPE with LC–MS analysis resulted in method detection limits of less than 5 μg L−1. The method has been used for analysis of groundwater samples collected from a site of a former ammunition plant. Contamination with nitrobenzoic acids was determined at μg L−1 levels.  相似文献   

10.
An improved selectivity method for the simultaneous determination of four benzotriazoles (benzotriazole, 4-methylbenzotriazole, 5-methylbenzotriazole, and 5,6-dimethyl-1H-benzotriazole) and six benzothiazoles (benzothiazole, 2-hydroxybenzothiazole, 2-benzothiazolamine, mercaptobenzothiazole, 2-methylbenzothiazole, and 2-methylthiobenzothiazole) in aqueous matrices has been developed. Under optimal conditions, analytes are concentrated using a MAX solid-phase extraction (SPE) cartridge, based on divinylbenzene-N-vinylpyrrolidone functionalized with quaternary amine groups, which allows reversed-phase interactions in combination with ionic exchange. Selected compounds are recovered with methanol–acetone 7:3 (v/v) whereas acidic interferences remained attached to the sorbent, and as determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), LOQs for surface, urban and industrial wastewater are in the range of 0.002–0.29 ng/mL. Figures of merit of the method revealed good precision (RSD% <12%), linearity (R 2 > 0.99) and accuracy (%R = 80–100%) for surface waters and effluents allowing direct external standard quantification. For more complex samples, such as urban and industrial raw wastewater, either the standard addition method or pseudo-external standard calibration using matrix matched standards are recommended. Analysis of different real samples, surface, urban wastewater and, for the first time, metal industry wastewater, reflected concentrations up to 310 ng/mL. The methylbenzotriazole isomers ratio was also determined.  相似文献   

11.
Ultrahigh-performance liquid chromatography–quadrupole-time of-flight mass spectrometry (UHPLC–Q-TOF-MS) was widely used in identification of complex ingredients in traditional Chinese herbs and herbal medicinal preparations for its excellent performance. Yangxinshi tablet, a Chinese compound herbal medicinal formula, has excellent efficacy for the clinical treatment of cardiovascular diseases, but its active ingredients are unclear. In this study, a rapid and sensitive UHPLC–Q-TOF/MS and secondary mass spectrometry (MS2) method were developed to characterize the comprehensive ingredients in Yangxinshi tablet and rat plasma after drug administration. And finally a total of 178 constituents in the Yangxinshi tablet were identified effectively, and 39 parent molecules in rat plasma were rapidly characterized by matching the Yangxinshi tablet chemical library established by ourselves. Of which, seven groups of isomers were further distinguished according to their MS2 spectra and fragmentation ions. Furthermore, 31 metabolites in the rat plasma were specified and elucidated according to their typical fragmentation ions, and their main metabolic pathways were hydration of phase I reaction and glucuronidation of phase II reaction. It is concluded that this established analysis method is rapid, specific, and practical, and these analysis results will provide help for further quality control and pharmacological study of Yangxinshi tablet.  相似文献   

12.
A reversed-phase LC–MS method with quadrupole-time of flight (QTOF) detection has been developed for the determination of four dinitro-toluenesulfonic acids and two amino-nitro-toluenesulfonic acids in groundwater. The analytes were separated by HPLC with 0.1% (v/v) formic acid as mobile phase modifier compatible with mass spectrometric detection. QTOF-MS analysis with negative ion electrospray ionization afforded good selectivity and sensitivity for analysis of the dinitro- and amino-nitro-toluenesulfonic acids. Structure elucidation and confirmation were accomplished by tandem mass spectrometry. Characteristic ions resulting from the loss of NO, NO2, and SO2 from the [M–H] ions were detected. An intense fragment ion at m/z 80 representing the [SO3] ion was detected for all dinitro- and amino-nitro-toluenesulfonic acids. Solid-phase extraction using a co-polymer cartridge was developed for preconcentration of the analytes from water. Good recovery (>85%) was achieved when 0.1% formic acid was added into the water samples before extraction. Method detection limits ranged from 10 to 76 ng L–1 for the targeted compounds when 10 mL water was analyzed. Groundwater samples collected from wells close to a former ammunition plant in Stadtallendorf, Germany, were analyzed for the dinitro- and amino-nitro-toluenesulfonic acids.  相似文献   

13.
Pollutants such as human pharmaceuticals and synthetic hormones that are not covered by environmental legislation have increasingly become important emerging aquatic contaminants. This paper reports the development of a sensitive and selective multi-residue method for simultaneous determination and quantification of 23 pharmaceuticals and synthetic hormones from different therapeutic classes in water samples. Target pharmaceuticals include anti-diabetic, antihypertensive, hypolipidemic agents, β2-adrenergic receptor agonist, antihistamine, analgesic and sex hormones. The developed method is based on solid phase extraction (SPE) followed by instrumental analysis using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS) with 30 min total run time. River water samples (150 mL) and (sewage treatment plant) STP effluents (100 mL) adjusted to pH 2, were loaded into MCX (3 cm3, 60 mg) cartridge and eluted with four different reagents for maximum recovery. Quantification was achieved by using eight isotopically labeled internal standards (I.S.) that effectively correct for losses during sample preparation and matrix effects during LC–ESI-MS/MS analysis. Good recoveries higher than 70% were obtained for most of target analytes in all matrices. Method detection limit (MDL) ranged from 0.2 to 281 ng/L. The developed method was applied to determine the levels of target analytes in various samples, including river water and STP effluents. Among the tested emerging pollutants, chlorothiazide was found at the highest level, with concentrations reaching up to 865 ng/L in STP effluent, and 182 ng/L in river water.  相似文献   

14.
The main aim of the presented research is to introduce a new technique, ultra performance liquid chromatography-positive/negative electrospray tandem mass spectrometry (UPLC-ESI/MS/MS), for the development of new simultaneous multiresidue methods (over 50 compounds). These methods were used for the determination of multiple classes of pharmaceuticals (acidic, basic and neutral compounds: analgesic/anti-inflammatory drugs, antibiotics, antiepileptics, beta-adrenoceptor blocking drugs, lipid regulating agents, etc.), personal care products (sunscreen agents, preservatives, disinfectant/antiseptics) and illicit drugs (amphetamine, cocaine and benzoylecgonine) in surface water and wastewater. The usage of the novel UPLC system with a 1.7 microm particle-packed column allowed for good resolution of analytes with the utilisation of low mobile phase flow rates (0.05-0.07 mL min(-1)) and short retention times (method times of up to 25 min), delivering a fast and cost-effective method. SPE with the usage of Oasis MCX strong cation-exchange mixed-mode polymeric sorbent was chosen for sample clean-up and concentration. The influence of mobile phase composition, matrix-assisted ion suppression in ESI-MS and SPE recovery on the sensitivity of the method was extensively studied. The method limits of quantification were at low nanogram per litre levels and ranged from tenths of ng L(-1) to tens of ng L(-1) in surface water and from single ng L(-1) to a few hundreds of ng L(-1) in the case of wastewater. The instrumental and method intraday and interday repeatabilities were on average less than 5%. The method was successfully applied for the determination of pharmaceuticals in the River Taff (South Wales) and a wastewater treatment plant (WWTP Cilfynydd). Several pharmaceuticals and personal care products were determined in river water at levels ranging from single ng L(-1) to single microg L(-1).  相似文献   

15.
16.
A fast multi-residue method based on dispersive solid-phase extraction (DSPE) followed by liquid chromatography–tandem mass spectrometry was developed for the simultaneous determination of 44 pesticides in raw bovine milk. Raw bovine milk samples did not percolate through SPE cartridges usually applied for pesticide extraction from homogenized pasteurized milk samples. Therefore, a DSPE technique was implemented and validated for the first time in this work. Graphitized non-porous carbon and C18 modified silica materials were tested both in combination with magnesium sulfate and bonded silica with ethylenediamine-N-propyl phase. The efficiency of the DSPE process was studied at several concentration levels obtaining the higher recoveries with C18 material. The method performance was also assessed and the limits of quantification reached the ng g−1 level, complying with the most recent maximum residue levels. The DSPE method was also shown to be suited to both the fatty and skimmed fractions issued from raw milk. Finally, the extraction method was successfully applied to the analysis of raw milk samples collected in 23 farms of dairy cattle from NW Spain (Galicia).  相似文献   

17.
A screening method for multiple classes of pesticides and pharmaceuticals from fish cultivation water was established using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Parallel solid-phase extraction (SPE) with different adsorbents was selected for extracting and purifying analytes with different properties. This method allowed for efficient and economical screening of a virtually unlimited number of compounds without reference standards. In order to evaluate the feasibility of this method, 25 pesticides and pharmaceuticals with different properties were selected. The screening detection limit of this method was 0.015?µg L?1, which was lower than the maximum residue limits. This value showed that the method was suitable for screening organic contaminants in fish cultivation water. In a simulation experiment, the organic contaminants with high intensity (atrazine and carbendazim) were identified by retention time, accurate mass, isotopic pattern, and the main fragment ions. Moreover, the information about the organic contaminants and MS2 spectra was added into a database. Since the QTOF-MS data were traceable, they were saved and could be reexamined for compounds that previously were unexpected. This method provides insight into the screening and identification of organic contaminants in water samples, as well as risk assessment and fishery accident identification.  相似文献   

18.
A simple and quick online solid-phase extraction (SPE) coupled to liquid chromatography (LC)/tandem mass spectrometry (MS/MS) for the determination of the five antibiotics (florfenicol, FF; lincomycin, LCM; oxytetracyclin, OTC; tylosin, TS; valnemulin, VLM) in swine wastewater has been developed. After filtration, aliquots (100 μl) of wastewater samples were directly injected to a column-switching LC system. Some matrix interference was removed by washing up SPE column with 0.2% formic acid solution and acetonitrile. Antibiotics eluted from SPE column were separated on analytical column by converting switching valve and were detected by MS/MS. Calibration curves using the method of standard addition had very good correlation coefficients (r > 0.99) in the range of 0.1 to 2 ng/ml. The intra-day precision of the method was less than 12% and the inter-day precision was between 6 to 17%. The detection limits were 0.01–0.1 ng/ml. When this method was applied to wastewater samples in swine facilities, four compounds (LCM, OTC, TS, and VLM) were detected.  相似文献   

19.
The determination of pesticides in food products is an essential issue to guarantee food safety and minimise health risks of consumers. A protocol based on membrane-assisted solvent extraction and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) that allows the determination of 18 pesticides in red wine at minimum labour effort for sample preparation was developed and validated. Ten millilitres of wine were extracted using 100 μL of toluene filled in a non-porous polyethylene membrane bag which is immersed in the wine sample. After 150 min extraction under stirring, an aliquot of the extraction solution is analysed using HPLC-MS/MS. The limits of quantification ranged from 3 ng/L for Pirimicarb to 1.33 μg/L for Imidacloprid. Quantification by matrix-matched calibration provided relative standard deviations ≤16 % for most of the target pesticides. The linearity of calibration was given over three to four orders of magnitude, which enables the reliable measurement of a broad range of pesticide concentrations, and for each target pesticide, the sensitivity of the protocol meets the maximum residue levels set by legislations at least for wine grapes. Good agreement of results was found when the new method was compared with a standard liquid-liquid extraction protocol. In five wine samples analysed, Carbendazim and Metalaxyl were determined at micrograms per litre concentrations, even in some of the organic wines. Tebuconazol and Cyprodinitril were determined at lower abundance and concentration, followed by Spiroxamin and Diuron.  相似文献   

20.
Chemical residues, such as insecticides and anthelmintics, are frequently redistributed from the aquatic environment to marine species. This work reports on a fast validated protocol for the analysis of azamethiphos, three avermectins, two carbamates and two benzoylurea pesticides and chemotherapeutic agents in seaweeds based on pressurized liquid extraction and separation of analytes by liquid chromatography coupled with tandem mass spectrometry. The variables affecting the efficiency of pressurized liquid extraction, including temperature, number of extraction cycles, static extraction time and percent acetonitrile flush volume, were studied using a Doehlert design. The optimum parameters were 100 °C and one cycle of 3 min with 70 % acetonitrile. Adequate in-cell clean-up of the seaweeds was achieved using 0.8 g of Florisil over 0.1 g of graphitized carbon black on the bottom of the cell. The optimized method was validated using an analyte-free seaweed sample fortified at different concentrations. The limits of quantification ranged from 3.6 μg kg(-1) (azamethiphos) to 31.5 μg kg(-1) (abamectin). The recovery was from 87 to 120 % in most cases at different spiking levels. Finally, the reproducibility of the method expressed as the relative standard deviation and evaluated at concentrations of 10 and 50 μg kg(-1) was in the range 9-14.3 % and 6.1-12.3 %, respectively. The applicability of the method was evaluated with five commercial and 12 wild edible seaweeds, and four target compounds were detected in two wild seaweeds at a concentration below the quantification limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号