首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Cobalt oxide (Co3O4) and copper-doped cobalt oxide (CuxCo(3-x)O4) films have been prepared onto titanium support by the thermal decomposition method. The electrodes have been characterized by different techniques such as cyclic voltammetry, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The effect on the electrochemical and crystallographic properties and surface morphology of the amount of copper in the oxide layer has been analyzed. The XPS spectra correspond to a characteristic monophasic Cu-Co spinel oxides when x is below 1. However, when the copper content exceeds that for the stoichiometric CuCo2O4 spinel, a new CuO phase segregates at the surface. The analysis of the surface cation distribution indicates that Cu(II) has preference for octahedral sites.  相似文献   

3.
利用X射线光电子能谱(XPS)及氩离子刻蚀技术,通过改变氩离子枪的刻蚀模式,原位研究氩离子刻蚀对氧化铜的还原情况。结果发现在极其微弱的氩离子束流轰击下,CuO即被还原,刻蚀初期变化较大,之后达到稳恒状态。对Cu2p峰拟合,同时结合俄歇CuLMM峰变化,判定纯CuO经氩离子刻蚀后最终转变为氧化铜、氧化亚铜及少量单质铜的共存状态。研究结果将对氧化铜深度剖析中化学状态的判断具有重要参考价值。  相似文献   

4.
Depth profiling has been performed by using X-ray photoelectron spectrometry (XPS) in combination with Ar-ion sputtering, Rutherford backscattering spectrometry (RBS) and glow discharge optical emission spectrometry (GDOES). The data obtained by XPS have been subjected to factor analysis in order to determine the compositional layering of the copper oxides. This leads to two or three relevant components within the oxide layers consisting of Cu(2)O or CuO dependent on the sample preparation. GDOES measurements show sputtering profiles which are seriously influenced by a varying sputter rate. To ensure the results obtained so far, RBS measurements of the oxide layers have been carried out in order to discover artefacts of the other methods used and to demonstrate the excellent suitability of RBS for quantitative analysis of these layers. Chemical analysis consisting of (1) carrier-gas fusion analysis (CGFA) and (2) selective dissolution of Cu(2)O/CuO allows the determination of the total amount of oxygen and copper, respectively, and can serve as a cornerstone of quantitative analysis.  相似文献   

5.
A series of tetragonal zirconia-supported CuO oxide catalysts with various CuO loadings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), ultraviolet and visible diffuse reflectance spectroscopy (UV/vis-DRS), and temperature-programmed reduction (TPR) measurements. The results indicate that the dispersion capacity of copper oxide on this support is approximately 8.6 Cu(2+) ions/nm(2) ZrO(2). The state of the resulting supported copper species depends on the CuO loading. At CuO loadings below the dispersion capacity, only highly dispersed copper ion species are present on the surface of t-ZrO(2). In particular, isolated Cu ions are the predominant species at low loadings. In contrast, pair Cu ions become the most abundant species at loadings near the dispersion capacity. It has been proposed that these dispersed CuO (isolated and paired Cu ions) have a symmetric 5-fold-oxygen-coordination symmetry (C(3)(v) symmetry) and can be described as distorted octahedra with a missing corner or a trigonal bipyramids. Finally, at CuO loadings above the dispersion capacity the formation of crystalline CuO is observed. TPR results reveal that the dispersed Cu ion species have a different reducibility from CuO crystallites, presumably due to strong interactions between these species and the t-ZrO(2) support. The catalytic activity of these CuO/t-ZrO(2) catalysts for the decomposition of N(2)O can also be directly correlated to CuO dispersion, with paired Cu ions being the most active species for this reaction.  相似文献   

6.
冯小辉  刘瑞  徐香兰  佟云艳  张诗婧  何佳城  徐骏伟  方修忠  王翔 《催化学报》2021,42(3):396-408,中插15-中插16
柴油车尾气排放的碳烟颗粒造成了日益严重的环境污染.目前催化燃烧是消除碳烟颗粒污染的有效技术.针对金属氧化物负载体系,20世纪70年代末谢有畅教授等人提出了单层分散理论,是指导设计高效负载催化剂的一个重要思想,已被科研工作者们普遍接受.当负载催化剂体系用于某个特定反应时,通常会表现出单层分散阈值效应,即负载的活性组分含量...  相似文献   

7.
The anodic dissolution of color carrier of colored aluminum anodic oxide films (AOF) is studied before and after their coloring, using ac in various electrolytes containing Cu(II). The voltammetric polarization curves of anodic dissolution of colored AOF in 0.1 M H2SO4 depend on the amount of copper deposited in the pores and its oxidation state (Cu, Cu2O, CuO). Analytical and X-ray diffraction examination of AOF prior to and after the anodic dissolution shows that the anodic dissolution method is inapplicable for the determination of the oxidation state of copper electrodeposited in AOF pores or the amount of copper oxides.  相似文献   

8.
Metal overlayers deposited in vacuum onto self-assembled monolayer (SAM) systems serve as models for more complex metalized polymers. Metals (M) deposited onto SAMs with different organic functional end groups exhibit a wide range of behavior, ranging from strong chemical interactions with the end group to complete penetration of the metal through the SAM. In this work, we have characterized the interactions of Cu with the ---COOH of mercaptohexadecanoic acid (MHA, HOOC(CH2)15SH) SAMs self assembled on gold films by using X-ray photoelectron spectroscopy (XPS) to examine the chemical interactions, and a combination of XPS and ion scattering spectroscopy (ISS) to deduce the growth mode and penetration rate of the deposited Cu. We found that submonolayer amounts of Cu react with HOOC, whereas the rest of the Cu remains metallic and penetrates beneath the SAM surface to the SAM  Au interface. Considerable amounts of Cu (5 nm or more) will penetrate beneath the SAM layer, which is ca. 2.5 nm thick, despite the submonolayer presence of Cu at the SAM surface. The penetration rate depends strongly on the Cu deposition rate. Depositing copper onto MHA at 220 K or less, or using faster Cu deposition rates, results in slower or even completely suppressed penetration of the Cu through the SAM layer, whereas exposure to X-rays greatly enhances the penetration rate of large amounts of Cu through the SAM layer. The reacted copper is, based on the XPS 2p and LMM peaks, in the +2 oxidation state, but cannot be identified with a simple, stoichiometric oxide such as Cu2O, CuO, or Cu (OH)2.  相似文献   

9.
A Cu1O1.7 oxide film containing a large amout of superstoichiometric oxygen was obtained by low-temperature oxidation of metallic copper in the oxygen plasma. An STM study of the film structure showed that ~10 nm planar copper oxide nanocrystallites with particles packed parallel to the starting metal surface. In an XPS study, the spectral characteristics of the Cu2p and O1s lines indicated that particles with a CuO lattice formed (E bnd(Cu2p 3/2) = 933.3 eV and a shake-up satellite, E bnd(O1s) = 529.3 eV). The additional superstoichiometric oxygen is localized at the sites of contact of nanoparticles in the interunit space and is characterized by a state with the binding energy E bnd(O1s) = 531.2 eV. Due to the formation of a nanostructure in the films during low-temperature plasma oxidation, the resulting copper oxide has a much lower thermal stability than crystalline oxide CuO.  相似文献   

10.
A series of copper catalysts supported on TiO2-ZrO2 with copper loading varying from 1.0 to 21.6 wt % were prepared by a wet impregnation method. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, electron spin resonance (ESR), temperature programmed reduction (TPR), and Brunauer-Emmett-Teller specific surface area measurements. Copper dispersion and metal area were determined by N2O decomposition by the passivation method. XRD results suggest that the copper oxide is present in a highly dispersed amorphous state at copper loadings <16.8 wt % in the sample and as a crystalline CuO phase at higher Cu loadings. Copper dispersion increases with Cu loading up to 5.1 wt % and levels off at higher loadings. The XPS peak intensity ratios of Cu 2p(3/2)/Ti 2p(3/2) and Cu 2p(3/2)/Zr 3d(5/2) were compared with the copper dispersion calculated from N2O decomposition. ESR results suggest the presence of two types of copper species on the TiO2-ZrO2 support. TPR profiles reveal the presence of highly dispersed copper oxide at lower temperatures and bulk CuO at higher temperatures. The catalytic properties were evaluated for the vapor-phase dehydrogenation of cyclohexanol to cyclohexanone and related to the dispersion of Cu on TiO2-ZrO2.  相似文献   

11.
用XPS测定了LnCu2O4(Ln=Gd, Nd)的内层和价层电子能谱,观察到LnCu2O4中稀土金属的3d电子结合能比相应的稀土金属简单氧化物的3d结合能低0.8~0.9 eV,而Cu的2p电子结合能比CuO的高0.4~0.5 eV,因此推断在LnCu2O4的Ln-O-Cu链中存在Cu→O→Ln电荷转移.XPS分析还表明LnCu2O4的Cu原子上有较低的电荷密度,但不存在混合价态.此外,通过比较价电子能谱,发现NdCu2O4的Ln 4f Cu 3d O 2p价带中心比GdCu2O4的价带中心向Fermi能级移近了3.4 eV,而且NdCu2O4的价带谱更窄.  相似文献   

12.
用 XPS测定了 LnCu2O4(Ln=Gd, Nd)的内层和价层电子能谱,观察到 LnCu2O4中稀土金属的 3d电子结合能比相应的稀土金属简单氧化物的 3d结合能低 0.8~ 0.9 eV,而 Cu的 2p电子结合能比 CuO的高 0.4~ 0.5 eV,因此推断在 LnCu2O4的 Ln- O- Cu链中存在 Cu→ O→ Ln电荷转移 .XPS分析还表明 LnCu2O4的 Cu原子上有较低的电荷密度,但不存在混合价态 .此外,通过比较价电子能谱,发现 NdCu2O4的 Ln 4f Cu 3d O 2p价带中心比 GdCu2O4的价带中心向 Fermi能级移近了 3.4 eV,而且 NdCu2O4的价带谱更窄 .  相似文献   

13.
The anodic formation of Cu(I) and Cu(II) oxides on polycrystalline copper and copper-gold alloys (4 and 15 at% Au) in deoxygenated 0.1 M KOH was examined by voltammetry, chronoamperometry, and chronopotentiometry with a synchronous registration of photocurrent and photopotential, in situ spectroscopy of photocurrent as well as XPS and SEM measurements. The band gap of p-Cu2O is 2.2 eV for indirect optical transitions independent of the concentration of gold in Cu-Au alloy. It grows on CuOH or n-Cu2O underlayer. The increase of anodic potential results in a thickening of oxide film which is a mixture of Cu(I) and Cu(II) oxides. The latter is a p-type semiconductor with a low photosensitivity. The rate of oxide formation on the alloys is lower than on copper. The structure-dependent properties of the oxide phase on the alloys and copper are different. Copper is prone to corrosive oxidation even in deoxygenated alkaline solution by the traces of molecular oxygen. The corrosive growth of Cu(I) oxide film occurs according to the parabolic law. After the cathodic polarization, the surface of copper remains free of corrosive oxide no longer than 15–20 min. The preliminary anodic formation even of a thin Cu2O film as well as the alloying of copper with gold suppresses the corrosive oxidation of copper.  相似文献   

14.
The structural and electronic properties of Ce(1-x)Cu(x)O(2) nano systems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Cu atoms embedded in ceria had an oxidation state higher than those of the cations in Cu(2)O or CuO. The lattice of the Ce(1)(-x)Cu(x)O(2) systems still adopted a fluorite-type structure, but it was highly distorted with multiple cation-oxygen distances with respect to the single cation-oxygen bond distance seen in pure ceria. The doping of CeO(2) with copper introduced a large strain into the oxide lattice and favored the formation of O vacancies, leading to a Ce(1-x)Cu(x)O(2-y) stoichiometry for our materials. Cu approached the planar geometry characteristic of Cu(II) oxides, but with a strongly perturbed local order. The chemical activities of the Ce(1-x)Cu(x)O(2) nanoparticles were tested using the reactions with H(2) and O(2) as probes. During the reduction in hydrogen, an induction time was observed and became shorter after raising the reaction temperature. The fraction of copper that could be reduced in the Ce(1-x)Cu(x)O(2) oxides also depended strongly on the reaction temperature. A comparison with data for the reduction of pure copper oxides indicated that the copper embedded in ceria was much more difficult to reduce. The reduction of the Ce(1-x)Cu(x)O(2) nanoparticles was rather reversible, without the generation of a significant amount of CuO or Cu(2)O phases during reoxidation. This reversible process demonstrates the unusual structural and chemical properties of the Cu-doped ceria materials.  相似文献   

15.
The bonding properties of 1-phenyl-1-propyne (PP, C6H5CCCH3) on Cu(111) at 100 K have been studied using temperature-programmed desorption (TPD), and X-ray, ultraviolet, and two-photon photoemission spectroscopies (XPS, UPS, and 2PPE). In TPD, there is no evidence for dissociation. Multilayer desorption occurs at 187 K, and monolayer desorption occurs at 320 (83.5 kJ/mol) and 390 K (102.4 kJ/mol), with the latter dominating. Based on the calibrated C(1s) XPS, the saturation monolayer coverage is one PP per four surface Cu atoms. The broad and asymmetric C(1s) intensity profile of the monolayer can be resolved into three symmetric components, with peaks at 283.6, 284.5, and 285.2 eV and intensities of 2:6:1, respectively. These are attributed, respectively, to acetylenic carbons bound to Cu, phenyl, and methyl carbons. The monolayer valence band ultraviolet photoemission spectrum profile contains four resonances attributable to PP perturbed by interactions with the Cu(111) substrate. With the exception of the highest occupied molecular orbital (HOMO) that is shifted by 0.4 eV, these are uniformly shifted by 1 eV further from the Fermi level for the multilayer. Calculated electron density plots of the occupied orbitals coupled with UPS profiles suggest a spectator role for the phenyl group and bonding to Cu via the acetylenic carbons. The adsorption of 1.0 monolayer (ML) of PP on Cu(111) lowers the work function by 0.85 eV. Using 2PPE, two unoccupied orbitals were identified at 1.0 (U1*-LUMO) and 0.6 eV (U2*-image state) below the vacuum level. A chemisorption model consistent with these spectroscopic results and the major chemisorption peak in TPD involve di-sigma-bonding of the acetylenic carbons to a pair of second-nearest neighbor surface Cu atoms (cross-bridge).  相似文献   

16.
The peculiarities of oxygen nonstoichiometry (δ) in tetragonal La(2-x)Sr(x)CuO(4-δ) solid solution with x(Sr) = 0.15-1.2 were studied by XRD, NPD, in situ high-temperature XPS, and chemical analysis. Temperature dependences of oxygen nonstoichiometry, δ = δ(T), were obtained for different Sr contents at 1 bar of O(2). Two types of charge compensation during replacement of lanthanum by strontium are discussed: an increase of the average copper oxidation state and a formation of oxygen vacancies. The average copper oxidation state V(Cu) exhibits a maximum of 2.32 at x(Sr) = 0.6, while δ increases with x(Sr). Oxygen vacancies are unambiguously located on the 4c site ({CuO(2)} plane) for compositions with different strontium contents, which electronic state is described by the O 2p core electron peak at about 531 eV. Thermal stability of the solid solution in a vacuum is associated with the extraction of practically the entire oxygen from CuO(2) layers and the formation of Cu(+) at least in the near-surface region. The higher average copper oxidation state after synthesis in the Sr-rich phases in comparison with the Sr-poor compositions prevents oxygen removal and the formation of Cu(+) and, therefore, stabilizes the structure during heating in a vacuum.  相似文献   

17.
A series of zirconia supported copper oxide catalysts with varying copper loadings (1.2-19.1 wt %) were prepared by impregnation method. The catalysts were characterized by X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), and temperature-programmed desorption of CO2. Copper dispersion and metal area were determined by N2O decomposition method. X-ray diffraction patterns indicate the presence of crystalline CuO phase beyond 2.7 wt % of Cu on zirconia. UV-visible diffuse reflectance spectra suggest the presence of two types of copper species on the ZrO2 support. XPS peaks intensity ratio of Cu 2p3/2 and Zr 3d5/2 was compared with Cu dispersion calculated from N2O decomposition. TPR patterns reveal the presence of highly dispersed copper oxide at lower temperatures and bulk CuO at higher temperatures. The basicity of the catalysts was found to increase with Cu loading, and the activity of the catalysts was also found to increase with the increase in Cu loading up to 2.7 wt % Cu loading. The catalytic properties were evaluated for the dehydrogenation of cyclohexanol to cyclohexanone and were related to surface properties of the copper species supported on zirconia.  相似文献   

18.
Depth profiling has been performed by using X-ray photoelectron spectrometry (XPS) in combination with Ar-ion sputtering, Rutherford backscattering spectrometry (RBS) and glow discharge optical emission spectrometry (GDOES). The data obtained by XPS have been subjected to factor analysis in order to determine the compositional layering of the copper oxides. This leads to two or three relevant components within the oxide layers consisting of Cu2O or CuO dependent on the sample preparation. GDOES measurements show sputtering profiles which are seriously influenced by a varying sputter rate. To ensure the results obtained so far, RBS measurements of the oxide layers have been carried out in order to discover artefacts of the other methods used and to demonstrate the excellent suitability of RBS for quantitative analysis of these layers. Chemical analysis consisting of (1) carrier-gas fusion analysis (CGFA) and (2) selective dissolution of Cu2O/CuO allows the determination of the total amount of oxygen and copper, respectively, and can serve as a cornerstone of quantitative analysis.  相似文献   

19.
CuO-BaO/SiO2催化剂的结构表征   总被引:9,自引:0,他引:9  
以XRD、XPS和EXAFS手段对CuO-BaO/Sic2催化剂及其还原态的结构进行了研究.结果表明,在CuO-BaO/SiO2体系中铜和钡都是以氧化态的形式存在,超细SiO2载体对所负载的CuO的结构有影响.随着样品负载量的逐渐降低,Cu-O和Cu-Cu睡的健长和配位数逐渐征小,而且低载量样品的健长和配位数减小的幅度最大.在总负载量>13.39%的样品中,CuO以晶相的形式存在;总负载量<13.39%的样品中,CUO呈现单层分布的高分出状态.还原态样品中钢以本价铜的形式存在,随负载量的降低,还原态Cu-Cu健的镇长和配位数也分别呈现出逐渐减小的趋势.还原态中心铜原子在催化剂表面的分布状态基本上保持了氧化态催化剂中CuO物相的分市状态.  相似文献   

20.
Until recently, there had been two conflicting views about the order of copper oxides (Cu(2)O and CuO) in their cathodic reduction with a neutral or weak alkaline electrolyte (typically 0.1 M KCl). In 2001, we successfully employed a strongly alkaline electrolyte (SAE; i.e., 6 M KOH + 1 M LiOH) to achieve a perfect separation of the reduction peaks of the two oxides. It was then found that the oxides were reduced in SAE according to a thermodynamic order, i.e., "CuO → Cu(2)O", and also that the reduction of CuO occurred in one step. At an extremely slow scan rate of <0.2 mV s(-1), however, CuO appears to be reduced in two steps via Cu(2)O. It has also been shown that the developed method with SAE can be applied to analysis of various corrosion products, including Cu(2)S, Cu(OH)(2), and patinas. Use of the developed method has allowed researchers to clarify the mechanism of the atmospheric corrosion of copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号