首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems is proposed based on the extended Hamiltonian principle, the Hamilton-Jacobi-Bellman (HJB) equation and its variational integral equation, and the finite time element approximation. The differential extended Hamiltonian equations for structural vibration systems are replaced by the variational integral equation, which can preserve intrinsic system structure. The optimal control law dependent on the value function is determined by the HJB equation so as to satisfy the overall optimality principle. The partial differential equation for the value function is converted into the integral equation with variational weighting. Then the successive solution of optimal control with system state is designed. The two variational integral equations are applied to sequential time elements and transformed into the algebraic equations by using the finite time element approximation. The direct optimal control on each time element is obtained respectively by solving the algebraic equations, which is unconstrained by the system state observed. The proposed control algorithm is applicable to linear and nonlinear systems with the quadratic performance index, and takes into account the effects of external excitations measured on control. Numerical examples are given to illustrate the optimal control effectiveness.  相似文献   

2.
This paper develops a technique for numerically solving hybrid optimal control problems. The theoretical foundation of the approach is a recently developed methodology by S.C. Bengea and R.A. DeCarlo [Optimal control of switching systems, Automatica. A Journal of IFAC 41 (1) (2005) 11–27] for solving switched optimal control problems through embedding. The methodology is extended to incorporate hybrid behavior stemming from autonomous (uncontrolled) switches that results in plant equations with piecewise smooth vector fields. We demonstrate that when the system has no memory, the embedding technique can be used to reduce the hybrid optimal control problem for such systems to the traditional one. In particular, we show that the solution methodology does not require mixed integer programming (MIP) methods, but rather can utilize traditional nonlinear programming techniques such as sequential quadratic programming (SQP). By dramatically reducing the computational complexity over existing approaches, the proposed techniques make optimal control highly appealing for hybrid systems. This appeal is concretely demonstrated in an exhaustive application to a unicycle model that contains both autonomous and controlled switches; optimal and model predictive control solutions are given for two types of models using both a minimum energy and minimum time performance index. Controller performance is evaluated in the presence of a step frictional disturbance and parameter uncertainties which demonstrates the robustness of the controllers.  相似文献   

3.
This paper introduces the application of linear Legendre multiwavelets to the optimal control synthesis for linear time-delayed systems. Based on some useful properties of linear Legendre multiwavelets, integration, product and delay operational matrices are proposed to solve the linear time-delayed systems first. Then, a quadratic cost functional is approximated by those properties. By using Lagrange multipliers, the quadratic cost functional is minimized subject to the solution of the linear time-delayed system and an explicit formula for the optimal control is obtained. The effectiveness of the method and accuracy of the solution are shown in comparison with some other methods by illustrative examples.  相似文献   

4.
Galerkin and wavelet methods for optimal boundary control of a couple of discretely connected parallel beams are proposed. First, the problem with boundary controls is converted into a problem with distributed controls. The problem is, then, reduced by a Galerkin-based approach into determining the optimal control of a linear time-invariant lumped parameter system, which will be solved by a wavelet-based method using Legendre wavelets. The integration-operational matrix and Kronecker product are utilized to significantly simplify the optimization problem into a system of linear equations. A numerical example is presented to demonstrate the applicability and the efficiency of the proposed method.  相似文献   

5.
In this paper, we propose a new deterministic global optimization method for solving nonlinear optimal control problems in which the constraint conditions of differential equations and the performance index are expressed as polynomials of the state and control functions. The nonlinear optimal control problem is transformed into a relaxed optimal control problem with linear constraint conditions of differential equations, a linear performance index, and a matrix inequality condition with semidefinite programming relaxation. In the process of introducing the relaxed optimal control problem, we discuss the duality theory of optimal control problems, polynomial expression of the approximated value function, and sum-of-squares representation of a non-negative polynomial. By solving the relaxed optimal control problem, we can obtain the approximated global optimal solutions of the control and state functions based on the degree of relaxation. Finally, the proposed global optimization method is explained, and its efficacy is proved using an example of its application.  相似文献   

6.
In this paper, the stochastic averaging method of quasi-non-integrable-Hamiltonian systems is applied to Duffing–van der Pol system to obtain partially averaged Ito stochastic differential equations. On the basis of the stochastic dynamical programming principle and the partially averaged Ito equation, dynamical programming equations for the reliability function and the mean first-passage time of controlled system are established. Then a non-linear stochastic optimal control strategy for coupled Duffing–van der Pol system subject to Gaussian white noise excitation is taken for investigating feedback minimization of first-passage failure. By averaging the terms involving control forces and replacing control forces by the optimal ones, the fully averaged Ito equation is derived. Thus, the feedback minimization for first-passage failure of controlled system can be obtained by solving the final dynamical programming equations. Numerical results for first-passage reliability function and mean first-passage time of the controlled and uncontrolled systems are compared in illustrative figures to show effectiveness and efficiency of the proposed method.  相似文献   

7.
Optimal nonlinear feedback control of quasi-Hamiltonian systems   总被引:12,自引:0,他引:12  
An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation. Project supported by the National Natural Science Foundation of China (Grant No. 19672054) and Cao Guangbiao High Science and Technology Development Foundation of Zhejiang University.  相似文献   

8.
In order to maintain spectrally accurate solutions, the grids on which a non-linear physical problem is to be solved must also be obtained by spectrally accurate techniques. The purpose of this paper is to describe a pseudospectral computational method of solving integro-differential systems with quadratic performance index. The proposed method is based on the idea of relating grid points to the structure of orthogonal interpolating polynomials. The optimal control and the trajectory are approximated by the m th degree interpolating polynomial. This interpolating polynomial is spectrally constructed using Legendre–Gauss–Lobatto grid points as the collocation points, and Lagrange polynomials as trial functions. The integrals involved in the formulation of the problem are calculated by Gauss–Lobatto integration rule, thereby reducing the problem to a mathematical programming one to which existing well-developed algorithms may be applied. The method is easy to implement and yields very accurate results. An illustrative example is included to confirm the convergence of the pseudospectral Legendre method, and a comparison is made with an existing result in the literature. © 1998 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

9.
A nonlinear stochastic optimal time-delay control strategy for quasi-integrable Hamiltonian systems is proposed. First, a stochastic optimal control problem of quasi-integrable Hamiltonian system with time-delay in feedback control subjected to Gaussian white noise is formulated. Then, the time-delayed feedback control forces are approximated by the control forces without time-delay and the original problem is converted into a stochastic optimal control problem without time-delay. After that, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle. As an example, the stochastic time-delay optimal control of two coupled van der Pol oscillators under stochastic excitation is worked out in detail to illustrate the procedure and effectiveness of the proposed control strategy.  相似文献   

10.
研究非线性分布时滞系统最优控制,提出一种基于线性分布时滞模型和二次型性能指标问题的迭代算法,将分布时滞系统化为满足马尔可夫性质的增广状态系统,在模型和实际存在差异的情况下,该算法通过迭代求解分布时滞线性最优控制问题和参数估计问题,获得原问题的最优解。给出该算法收敛于实际最优解的充分条件。  相似文献   

11.
A numerical method for solving non‐linear optimal control problems with inequality constraints is presented in this paper. The method is based upon Legendre wavelet approximations. The properties of Legendre wavelets are first presented. The operational matrix of integration and the Gauss method are then utilized to reduce the optimal control problem to the solution of algebraic equations. The inequality constraints are converted to a system of algebraic equalities; these equalities are then collocated at the Gauss nodes. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

13.
In this paper, a new numerical method for solving the optimal control of linear time-varying delay systems with quadratic performance index is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions, consisting of block-pulse functions and Bernoulli polynomials, are presented. The operational matrices of integration, product, delay and the integration of the cross product of two hybrid functions of block-pulse and Bernoulli polynomials vectors are given. These matrices are then utilized to reduce the solution of the optimal control of delay systems to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

14.
Optimal switch-time control is an area that investigates how best to switch between different control modes. In this paper we present an algorithm for solving the optimal switch-time control problem for single-switch, linear systems where the state of the system is only partially known through the outputs. A method is presented that both guarantees that the current switch time remains optimal as the state estimates evolve, and that ensures this in a computationally feasible manner, thus rendering the method applicable to real-time applications. An extension is moreover considered where constraints on the switch time provide the observer with sufficient time to settle. The viability of the proposed method is illustrated through a number of examples.  相似文献   

15.

A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre–Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh interval. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Furthermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.

  相似文献   

16.
The aim of this work is to provide a mathematical and numerical tool for the analysis of the manoeuvrability capabilities of a submarine. To this end, we consider a suitable optimal control problem with constraints in both state and control variables. The state law is composed of a highly coupled and nonlinear system of twelve ordinary differential equations. Control inputs appear in linear and quadratic form and physically are linked to rudders and propeller forces and moments. We consider a nonlinear Bolza type cost function which represents a commitment between reaching a final desired state and a minimal expense of control. In a first part, following recent ideas in [F. Periago, J. Tiago, A local existence result for an optimal control problem modeling the manoeuvring of an underwater vehicle, Nonlinear Anal. RWA 11 (2010) 2573–2583], we prove a local existence result for the above mentioned optimal control problem. In a second part, we address the numerical resolution of the problem by using a descent method with projection and optimal step-size parameter. To illustrate the performance of the method proposed in this paper and to show its application in a real engineering problem we include three different numerical experiments for a standard manoeuvre.  相似文献   

17.
A Legendre pseudospectral method is proposed for solving approximately an inverse problem of determining an unknown control parameter p(t) which is the coefficient of the solution u(x, y, z, t) in a diffusion equation in a three‐dimensional region. The diffusion equation is to be solved subject to suitably prescribed initial‐boundary conditions. The presence of the unknown coefficient p(t) requires an extra condition. This extra condition considered as the integral overspecification over the spacial domain. For discretizing the problem, after homogenization of the boundary conditions, we apply the Legendre pseudospectral method in a matrix based manner. As a results a system of nonlinear differential algebraic equations is generated. Then by using suitable transformation, the problem will be converted to a homogeneous time varying system of linear ordinary differential equations. Also a pseudospectral method for efficient solving of the resulted system of ordinary differential equations is proposed. The solution of this system gives the approximation to values of u and p. The matrix based structure of the present method makes it easy to implement. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed computational procedure. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 74‐93, 2012  相似文献   

18.
This paper presents a direct method based on Legendre–Radau pseudospectral method for efficient and accurate solution of a class of singular optimal control problems. In this scheme, based on a priori knowledge of control, the problem is transformed to a multidomain formulation, in which the switching points appear as unknown parameters. Then, by utilizing Legendre‐Radau pseudospectral method, a nonlinear programming problem is derived which can be solved by the well‐developed parameter optimization algorithms. The main advantages of the present method are its superior accuracy and ability to capture the switching times. Accuracy and performance of the proposed method are examined by means of some numerical experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, a Legendre collocation matrix method is presented to solve high-order Linear Fredholm integro-differential equations under the mixed conditions in terms of Legendre polynomials. The proposed method converts the equation and conditions to matrix equations, by means of collocation points on the interval [−1, 1], which corresponding to systems of linear algebraic equations with Legendre coefficients. Thus, by solving the matrix equation, Legendre coefficients and polynomial approach are obtained. Also examples that illustrate the pertinent features of the method are presented and by using the error analysis, the results are discussed.  相似文献   

20.
Shifted Legendre polynomial functions are employed to solve the linear-quadratic optimal control problem for lumped parameter system. Using the characteristics of the shifted Legendre polynomials, the system equations and the adjoint equations of the optimal control problem are reduced to functional ordinary differential equations. The solution of the functional differential equations are obtained in a series of the shifted Legendre functions. The operational matrix for the integration of the shifted Legendre polynomial functions is also introduced in the simulation step in order to simplify the computational procedure. An illustrative example of an optimal control problem is given, and the computational results are compared with those of the exact solution. The proposed method is effective and accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号