首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
Ju Zhou 《Discrete Mathematics》2018,341(4):1021-1031
A graph G is induced matching extendable or IM-extendable if every induced matching of G is contained in a perfect matching of G. In 1998, Yuan proved that a connected IM-extendable graph on 2n vertices has at least 3n?2 edges, and that the only IM-extendable graph with 2n vertices and 3n?2 edges is T×K2 , where T is an arbitrary tree on n vertices. In 2005, Zhou and Yuan proved that the only IM-extendable graph with 2n6 vertices and 3n?1 edges is T×K2+e, where T is an arbitrary tree on n vertices and e is an edge connecting two vertices that lie in different copies of T and have distance 3 between them in T×K2. In this paper, we introduced the definition of Q-joint graph and characterized the connected IM-extendable graphs with 2n4 vertices and 3n edges.  相似文献   

2.
For a 3-edge-connected cubic graph G=(V,E), we give an algorithm to construct a connected Eulerian subgraph of 2G using at most ?4|V|3? edges.  相似文献   

3.
4.
The vertices of Kneser graph K(n,k) are the subsets of {1,2,,n} of cardinality k, two vertices are adjacent if and only if they are disjoint. The square G2 of a graph G is defined on the vertex set of G with two vertices adjacent if their distance in G is at most 2. Z. Füredi, in 2002, proposed the problem of determining the chromatic number of the square of the Kneser graph. The first non-trivial problem arises when n=2k+1. It is believed that χ(K2(2k+1,k))=2k+c where c is a constant, and yet the problem remains open. The best known upper bounds are by Kim and Park: 8k3+203 for 1k3 (Kim and Park, 2014) and 32k15+32 for k7 (Kim and Park, 2016). In this paper, we develop a new approach to this coloring problem by employing graph homomorphisms, cartesian products of graphs, and linear congruences integrated with combinatorial arguments. These lead to χ(K2(2k+1,k))5k2+c, where c is a constant in {52,92,5,6}, depending on k2.  相似文献   

5.
A graph G is minimally t-tough if the toughness of G is t and the deletion of any edge from G decreases the toughness. Kriesell conjectured that for every minimally 1-tough graph the minimum degree δ(G)=2. We show that in every minimally 1-tough graph δ(G)n3+1. We also prove that every minimally 1-tough, claw-free graph is a cycle. On the other hand, we show that for every positive rational number t any graph can be embedded as an induced subgraph into a minimally t-tough graph.  相似文献   

6.
A graph G is said to be bicritical if the removal of any pair of vertices decreases the domination number of G. For a bicritical graph G with the domination number t, we say that G is t-bicritical. Let λ(G) denote the edge-connectivity of G. In [2], Brigham et al. (2005) posed the following question: If G is a connected bicritical graph, is it true that λ(G)3?In this paper, we give a negative answer toward this question; namely, we give a construction of infinitely many connected t-bicritical graphs with edge-connectivity 2 for every integer t5. Furthermore, we give some sufficient conditions for a connected 5-bicritical graph to have λ(G)3.  相似文献   

7.
8.
9.
10.
11.
For a subgraph X of G, let αG3(X) be the maximum number of vertices of X that are pairwise distance at least three in G. In this paper, we prove three theorems. Let n be a positive integer, and let H be a subgraph of an n-connected claw-free graph G. We prove that if n2, then either H can be covered by a cycle in G, or there exists a cycle C in G such that αG3(H?V(C))αG3(H)?n. This result generalizes the result of Broersma and Lu that G has a cycle covering all the vertices of H if αG3(H)n. We also prove that if n1, then either H can be covered by a path in G, or there exists a path P in G such that αG3(H?V(P))αG3(H)?n?1. By using the second result, we prove the third result. For a tree T, a vertex of T with degree one is called a leaf of T. For an integer k2, a tree which has at most k leaves is called a k-ended tree. We prove that if αG3(H)n+k?1, then G has a k-ended tree covering all the vertices of H. This result gives a positive answer to the conjecture proposed by Kano et al. (2012).  相似文献   

12.
13.
14.
15.
16.
Let G be a finite group, written multiplicatively. The Davenport constant of G is the smallest positive integer D(G) such that every sequence of G with D(G) elements has a non-empty subsequence with product 1. Let D2n be the Dihedral Group of order 2n and Q4n be the Dicyclic Group of order 4n. Zhuang and Gao (2005) showed that D(D2n)=n+1 and Bass (2007) showed that D(Q4n)=2n+1. In this paper, we give explicit characterizations of all sequences S of G such that |S|=D(G)?1 and S is free of subsequences whose product is 1, where G is equal to D2n or Q4n for some n.  相似文献   

17.
Let G be a plane graph, and let φ be a colouring of its edges. The edge colouring φ of G is called facial non-repetitive if for no sequence r1,r2,,r2n, n1, of consecutive edge colours of any facial path we have ri=rn+i for all i=1,2,,n. Assume that each edge e of a plane graph G is endowed with a list L(e) of colours, one of which has to be chosen to colour e. The smallest integer k such that for every list assignment with minimum list length at least k there exists a facial non-repetitive edge colouring of G with colours from the associated lists is the facial Thue choice index of G, and it is denoted by πfl(G). In this article we show that πfl(G)291 for arbitrary plane graphs G. Moreover, we give some better bounds for special classes of plane graphs.  相似文献   

18.
Let G be a balanced bipartite graph of order 2n4, and let σ1,1(G) be the minimum degree sum of two non-adjacent vertices in different partite sets of G. In 1963, Moon and Moser proved that if σ1,1(G)n+1, then G is hamiltonian. In this note, we show that if k is a positive integer, then the Moon–Moser condition also implies the existence of a 2-factor with exactly k cycles for sufficiently large graphs. In order to prove this, we also give a σ1,1 condition for the existence of k vertex-disjoint alternating cycles with respect to a chosen perfect matching in G.  相似文献   

19.
Let N be the set of all positive integers. A list assignment of a graph G is a function L:V(G)?2N that assigns each vertex v a list L(v) for all vV(G). We say that G is L-(2,1)-choosable if there exists a function ? such that ?(v)L(v) for all vV(G), |?(u)??(v)|2 if u and v are adjacent, and |?(u)??(v)|1 if u and v are at distance 2. The list-L(2,1)-labeling number λl(G) of G is the minimum k such that for every list assignment L={L(v):|L(v)|=k,vV(G)}, G is L-(2,1)-choosable. We prove that if G is a planar graph with girth g8 and its maximum degree Δ is large enough, then λl(G)Δ+3. There are graphs with large enough Δ and g8 having λl(G)=Δ+3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号