首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We generalize the field theory of the global monopole to the Dirac–Born–Infeld (DBI) field and investigate the gravitational property of a DBI global monopole in four-dimensional spherically symmetric spacetime. The coupled equations for the metric and the DBI scalar field are solved asymptotically and numerically. It is found that, just as for a canonical global monopole, the gravitational effect of the DBI global monopole is equivalent to that of a deficit solid angle in the metric plus a negative mass at the origin. However, compared with a canonical global monopole, for the same false vacuum and symmetry-breaking scale, a DBI global monopole has a relatively smaller core and a larger absolute value of effective mass. Thus, it can yield a larger deflect angle when the light is passing by. Especially, when the scale of the warp factor is small enough, the effective mass of a DBI global monopole does not depend apparently on the value of the false vacuum, which is qualitatively different from that of a canonical global monopole.  相似文献   

2.
We find a method to rewrite the equations of motion of scalar fields, generalized DBI field and quintessence, in the autonomous form for arbitrary scalar potentials. With the aid of this method, we explore the cosmic evolution of generalized DBI field and quintessence with the potential of multiple vacua. Then we find that the scalars are always frozen in the false or true vacuum in the end. Compared to the evolution of quintessence, the generalized DBI field has more times of oscillations around the vacuum of the potential. The reason for this point is that, with the increasing of speed \(\dot {\phi }\), the friction term of generalized DBI field is greatly decreased. Thus the generalized DBI field acquires more times of oscillations.  相似文献   

3.
We discuss a supersymmetric version of DBI (Dirac–Born–Infeld) inflation, which is a typical inflation model in string cosmology. The supersymmetric DBI action together with a superpotential always leads to correction terms associated with the potential into the kinetic term, which drastically change the dynamics of DBI inflation. We find two significant features of supersymmetric DBI inflation. The first one is that ultra-relativistic motion is prohibited to cause inflation, which leads to order of unity sound velocity squared and hence small non-Gaussianities of primordial curvature perturbations. The second one is that the relation between the tensor-to-scalar ratio and the field variation is modified. Then, significant tensor-to-scalar ratio r?0.01r?0.01 is possible because the variation of the canonically normalized inflaton can be beyond the reduced Planck scale. These new features are in sharp contrast with those of the standard non-supersymmetric DBI inflation and hence have a lot of interest implications on upcoming observations of cosmic microwave background (CMB) anisotropies by the Planck satellite as well as direct detection experiments of gravitational waves like DECIGO and BBO.  相似文献   

4.
We perform three tests on our proposal to implement diffeomorphism invariance in the non-abelian D0-brane DBI action as a base-point independence constraint between matrix Riemann normal coordinate systems. First, we show that T-duality along an isometry correctly interchanges the potential and kinetic terms in the action. Second, we show that the method to impose base-point independence using an auxiliary dN2-dimensional nonlinear sigma model also works for metrics which are curved along the brane, provided a physical gauge choice is made at the end. Third, we show that without alteration this method is applicable to higher order in velocities. Testing specifically to order 4, we elucidate the range of validity of the symmetrized trace approximation to the non-abelian DBI action.  相似文献   

5.
We perform a potential analysis for the holographic Schwinger effect in a deformed AdS5 model with conformal invariance broken by a background dilaton.We evaluated the static potential by analyzing the classical action of a string attached to a rectangular Wilson loop on a probe D3 brane located at an intermediate position in the bulk AdS space.We observed that the inclusion of the chemical potential tends to enhance the production rate,which is opposite to the effect of the confining scale.In addition,we calculated the critical electric field based on the Dirac-Born-Infeld(DBI)action.  相似文献   

6.
In this Letter we present a new inflationary model composed of multiple scalar fields where each of them has its own DBI action. We show that the dependence of the e-folding number and of the curvature perturbation on the number of fields changes compared with the normal N-flation model. Our model is also quite different from the usual DBI N-flation which is still based on one DBI action but involves many moduli components. Some specific examples of our model have been analyzed.  相似文献   

7.
Previous works have proved that a dielectric barrier injection (DBI) device could be used as an electrohydrodynamic (EHD) actuator. Such a device was used to generate a wall jet with an average velocity of 0.14 m/s.In this study, the liquid flow induced in the surface vicinity by a DBI actuator is measured by Particle Image Velocimetry (PIV). The phase analysis of the flow velocity shows that the DBI actuator mainly acts as a vortex generator. The work presented in this paper underline the relation between the vortex structures and the polarity of the injecting electrode.  相似文献   

8.
It is well-known that the exact solution of non-linear \(\sigma \) model coupled to gravity can be perceived as an exterior gravitational field of a global monopole. Here we study Einstein’s equations coupled to a non-linear \(\sigma \) model with Dirac–Born–Infeld (DBI) kinetic term in D dimensions. The solution describes a metric around a DBI global defects. When the core is smaller than its Schwarzschild radius it can be interpreted as a black hole having DBI scalar hair with deficit conical angle. The solutions exist for all D, but they can be expressed as polynomial functions in r only when D is even. We give conditions for the mass M and the scalar charge \(\eta \) in the extremal case. We also investigate the thermodynamic properties of the black holes in canonical ensemble. The monopole alter the stability differently in each dimensions. As the charge increases the black hole radiates more, in contrast to its counterpart with ordinary global defects where the Hawking temperature is minimum for critical \(\eta \). This behavior can also be observed for variation of DBI coupling, \(\beta \). As it gets stronger (\(\beta \ll 1\)) the temperature increases. By studying the heat capacity we can infer that there is no phase transition in asymptotically-flat spacetime. The AdS black holes, on the other hand, undergo a first-ordered phase transition in the Hawking–Page type. The increase of the DBI coupling renders the phase transition happen for larger radius.  相似文献   

9.
分析了一种高效简便测试精密薄板玻璃翘曲度的方法。这种方法是通过观测精密薄板玻璃和基准平面反射同一参考物的像,检测两个像分离的程度来判定精密薄板玻璃的翘曲度。通过对精密薄板玻璃表面变形形态进行抽象、模拟和近似处理,从理论上推导出精密薄板玻璃翘曲度 W ≤0 .003 ,样品尺寸在200m m ~500m m 的条件下,参考物直径与测量装置结构尺寸和翘曲度之间的关系式。  相似文献   

10.
In this Letter, we study the condition for a generalized DBI action providing a quintom scenario of dark energy. We consider a development of string-inspired quintom by introducing non-minimal coupling. Then we show that the bouncing solution can appear in the universe dominated by the non-minimally coupled quintom matter.  相似文献   

11.
We discuss the effective action of moduli fields in warped brane-world compactifications. For definiteness, a two-brane model with a bulk dilaton field and a power-law warp factor is considered. After deriving the classical four-dimensional effective action for the moduli, we present the calculation of the one-loop effective potential induced by bulk fields. A detailed discussion of renormalization is given, with emphasis on the local worldsheet operators which are generated. Finally, we outline the possible role of these operators in the stabilization of the moduli.  相似文献   

12.

Background  

Our previous studies indicated that metabotropic glutamate receptors (mGluRs) are deeply involved in the secondary processes after diffuse brain injury (DBI). In the present study, we used a rodent DBI model to determine whether hypotension exacerbates neuronal injury as a secondary brain insult (SBI) after traumatic brain injury (TBI) by changing the expression of metabotropic glutamate receptors (mGluRs) in the cerebral cortex.  相似文献   

13.
The present work reports a Holographic reconstruction of Dirac–Born–Infeld (DBI)-essence Dark Energy (DE) in a flat FRW universe. The scale factor a(t) is chosen in power law form. We have reconstructed the scalar field and potential and subsequently the equation of state (EoS) parameter ω of the DBI-essence DE. The corresponding plots show increasing scalar field, decaying tension and decaying potential. The reconstructed EoS parameter stays below ?1, showing a phantom-like behavior. The stability of the reconstructed DBI-essence DE is investigated through squared speed of sound $v_{s}^{2}$ : its negative sign reveals that the holographically reconstructed DBI-essence is classically unstable.  相似文献   

14.
We consider (d 0 + 2)-dimensional configurations with global strings in two extra dimensions and a flat metric in d 0 dimensions, endowed with a warp factor e depending on the distance l from the string center. All possible regular solutions of the field equations are classified by the behavior of the warp factor and the extradimensional circular radius r(l). Solutions with r → ∞ and r → const > 0 as l → ∞ are interpreted in terms of thick brane-world models. Solutions with r → 0 as ll c > 0, i.e., those with a second center, are interpreted as either multibrane systems (which are appropriate for large enough distances l c between the centers) or as Kaluza-Klein-type configurations with extra dimensions invisible due to their smallness. In the case of the Mexican-hat symmetry-breaking potential, we build the full map of regular solutions on the (ɛ, Γ) parameter plane, where ɛ acts as an effective cosmological constant and Γ characterizes the gravitational field strength. The trapping properties of candidate brane worlds for test scalar fields are discussed. Good trapping properties for massive fields are found for models with increasing warp factors. Kaluza-Klein-type models are shown to have nontrivial warp factor behaviors, leading to matter particle mass spectra that seem promising from the standpoint of hierarchy problems. The text was submitted by the authors in English.  相似文献   

15.
Since about ten years ago, varying α theories attracted many attentions, mainly due to the first observational evidence from the quasar absorption spectra that the fine structure “constant” might change with cosmological time. In this Letter, we investigate the cosmic evolution of α   driven by the Dirac–Born–Infeld (DBI) scalar field. To be general, we consider various couplings between the DBI scalar field and the electromagnetic field. We also confront the resulting Δα/αΔα/α with the observational constraints, and find that various cosmological evolution histories of Δα/αΔα/α are allowed. Comparing with the case of varying α driven by quintessence, the corresponding constraints on the parameters of coupling have been relaxed, thanks to the relativistic correction of the DBI scalar field.  相似文献   

16.
We review the symmetry energy in the context of AdS/CFT correspondence. After constructing D -brane configurations corresponding to dense system in boundary theory, we calculate the symmetry energy by solving DBI action of D branes in confining and deconfining phase. We conclude that the density dependence of the symmetry energy has scaling law, whose power depends only on the dimensionality of the branes and space-time.  相似文献   

17.
《Physics letters. [Part B]》2002,524(3-4):357-362
Based on the assumption that the warp factor of four-dimensional spacetime and the one of fifth dimension are tied through a parameter α, we consider five-dimensional gravity with a 3-brane coupled to a bulk scalar field. For arbitrary value of α, the form of the warp factor is implicitly determined by hypergeometric function. Concretely, we show that the warp factor becomes explicit form for appropriate value of α, and study the relation between four-dimensional effective Planck scale and the brane tension. This setup allows the possibility of extending the diversity of brane world.  相似文献   

18.
Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman–Hawking and Gidding–Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.  相似文献   

19.
In this paper, we have studied a 5-dimensional warped product space-time with a time-dependent warp factor. This warp factor plays an important role in localizing matter to the 4-dimensional hypersurface constituting the observed universe and leads to a geometric interpretation of dynamical dark energy. The five-dimensional field equations are constructed and its solutions are obtained. The nature of modifications produced by this warp factor in the bulk geometry is discussed. The hypersurface is described by a flat FRW-type metric in the ordinary spatial dimension. It is found that the effective cosmological constant of the four-dimensional universe is a variable quantity monitored by the time-dependent warp factor. The universe is initially decelerated, but subsequently makes a transition to an accelerated phase at later times.  相似文献   

20.
We study the action of the SL(2; R) group on the noncommutative DBI Lagrangian. The symmetry conditions of this theory under the above group will be obtained. These conditions determine the extra U(1) gauge field. By introducing some consistent relations we observe that the noncommutative (or ordinary) DBI Lagrangian and its SL(2; R) dual theory are dual of each other. Therefore, we find some SL(2; R) invariant equations. In this case the noncommutativity parameter, its T -dual and its SL(2; R) dual versions are expressed in terms of each other. Furthermore, we show that on the effective variables, T -duality and SL(2; R) duality do not commute. We also study the effects of the SL(2; R) group on the noncommutative Chern–Simons action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号