首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

2.
The anionic surfactant sodium dodecyl sulphate (SDS) can effect desorption of proteins from surfaces, and this mechanism has been exploited for suppressing adsorption interferences in anodic stripping voltammetry (ASV). Using cadmium and lead as test analytes, and albumin and lysozyme as model interferents, it was found that ASV signals strongly depressed by proteins regain their initial magnitude (prior to protein addition) when SDS is added in a concentration above a threshold value. Also, SDS protected against protein interference when the surfactant was added prior to the protein. SDS in itself caused little or no interference.  相似文献   

3.
It was investigated whether interferences from surfactants in anodic stripping voltammetry (ASV) could be remedied by the anionic surfactant sodium dodecyl sulfate (SDS) which causes little or no interference in itself. Cadmium and lead were used as test analytes, and measurements were performed in acetate buffer as well as in 0.1 M HNO3. One hundred parts per million of the interfering surfactant was added. SDS eliminated severe interference from the non-ionic surfactants Triton© X-100 and dodecyl octaethylene glycol ether as well as from the polymer polyethylene glycol 6000 and from the cationic surfactant cetyl trimethyl ammonium bromide. SDS could not remedy the extraordinarily severe interference from the cationic surfactant cetyl pyridinium chloride. Two anionic surfactants were also tested as interferents but they had little detrimental effect on the ASV signals. The effect of SDS was explained by the formation of mixed micelles which scavenge the interferent in the bulk solution and by competitive displacement of the interferent at the electrode surface.  相似文献   

4.
Hoyer B  Jensen N 《The Analyst》2004,129(8):751-754
The effectiveness of the anionic surfactant sodium dodecyl sulfate (SDS) for suppressing adsorption interferences in anodic stripping voltammetry (ASV) was investigated. The samples included fruit juices, wine, beer, milk powder and waste water, and the analytes were cadmium, lead and copper. In most of the samples, the ASV signals were severely depressed or even absent due to electrode fouling, but addition of SDS in concentrations up to 10 g L(-1) proved effective in restoring the ASV response. By using SDS as an interference suppressor, the content of lead and copper in a milk powder reference material was determined, and the results were in agreement with the certified values. In this determination, which could not have been performed without SDS, the surfactant also served as a homogenizing agent, preventing separation of the sample components. The effect of SDS was explained by the interaction of the surfactant with the electrode surface and with the constituents of the sample matrix.  相似文献   

5.
The adsorption of non-ionic polysaccharide—guar gum (GG) in the presence or absence of the surfactants: anionic SDS, cationic CTAB, nonionic TX-100 and their equimolar mixtures SDS/TX-100, CTAB/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the manganese dioxide surface (MnO2) was studied. The increase of GG adsorption amount in the presence of surfactants was observed in every measured system. This increase results from formation of complexes between the GG and the surfactant molecules. This observation was confirmed by the determination of the influence of GG on surfactants adsorption on the MnO2 surface. The increase of GG adsorption on MnO2 was the largest in the presence of the surfactant mixtures (CTAB/TX-100; SDS/TX-100) which is the evidence of the synergetic effect. The smallest amounts of adsorption were obtained in the presence of TX-100, which results from non-ionic character of this surface active agent. In the case of single surfactant solution CTAB has the best efficiency in increasing the amount of GG adsorption on MnO2 which results from strong interactions with GG and also with the negatively charged surface of the adsorbent. In order to determine the electrokinetic properties of the system, the surface charge density of MnO2 and the zeta potential measurements were performed in the presence of the GG macromolecules and the above mentioned surfactants and their mixtures. The obtained data showed that the adsorption of GG or GG/surfactants complexes on the manganese dioxide surface strongly influences the diffused part of the electrical double layer (EDL)—MnO2/electrolyte solution, but has no influence on the compact part of the electric double layer. This is the evidence that the polymers chains are directly bonded with the surface of the solid and the surfactants molecules are present in the upper part of the EDL.  相似文献   

6.
The critical aggregation concentration (CAC) of four with three kinds of conventional surfactants, namely, two cationic surfactants [hexadecyltrimethyl ammonium bromide (CTAB) and tetradecyltrimethyl ammonium bromide (TTAB)], one anionic surfactant [sodium dodecyl sulfate (SDS)], and a nonionic surfactant [Triton X-100 (TX-100)], were determined by variation of 1H chemical shifts with surfactant concentrations. Results show that the CAC values of protons at different positions of the same molecule are different, and those of the terminal methyl protons are the lowest, respectively, which suggests that the terminal groups of the alkyl chains aggregates first during micellization. Measurement of the transverse relaxation time (T2) of different protons in SDS also show that the terminal methyl protons start to decrease with the increase in concentration first, which supports the above mentioned tendency.  相似文献   

7.
The voltammetric performance of glassy carbon (GC) and edge‐plane pyrolytic graphite (EPPG) electrodes was investigated for the oxidation of potassium ferrocyanide in aqueous solution both with and without the addition of surfactant (sodium dodecyl sulfate and Triton X‐100). The heterogeneous electron transfer kinetics were determined for all cases, and it was found that the GC electrode surface was far more sensitive to the presence of surfactant than the more hydrophilic EPPG surface. This result was then applied to the electroanalysis of copper via adsorptive stripping voltammetry in the presence of Triton X‐100 and it was observed that the EPPG electrode response was unaffected by up to 100 μM of surfactant, whilst the voltammetry on the GC electrode was significantly affected by only 10 μM.  相似文献   

8.
The dynamic adsorption of polymer/surfactant mixtures containing poly(ethylene oxide) (PEO) with either tetradecyltrimethylammonium bromide (C(14)TAB) or sodium dodecyl sulfate (SDS) has been studied at the expanding air/water interface created by an overflowing cylinder, which has a surface age of 0.1-1 s. The composition of the adsorption layer is obtained by a new approach that co-models data obtained from ellipsometry and only one isotopic contrast from neutron reflectometry (NR) without the need for any deuterated polymer. The precision and accuracy of the polymer surface excess obtained matches the levels achieved from NR measurements of different isotopic contrasts involving deuterated polymer, and requires much less neutron beamtime. The PEO concentration was fixed at 100 ppm and the electrolyte concentration at 0.1 M while the surfactant concentration was varied over three orders of magnitude. For both systems, at low bulk surfactant concentrations, adsorption of the polymer is diffusion-controlled while surfactant adsorption is under mixed kinetic/diffusion control. Adsorption of PEO is inhibited once the surfactant coverage exceeds 2 μmol m(-2). For PEO/C(14)TAB, polymer adsorption drops abruptly to zero over a narrow range of surfactant concentration. For PEO/SDS, inhibition of polymer adsorption is much more gradual, and a small amount remains adsorbed even at bulk surfactant concentrations above the cmc. The difference in behavior of the two mixtures is ascribed to favorable interactions between the PEO and SDS in the bulk solution and at the surface.  相似文献   

9.
This work investigates the synergistic effects of a neutral polymer and an anionic surfactant on depletion forces as a function of bulk polymer and bulk surfactant concentration. In this work, we measure the force between a silica particle and a silica plate in aqueous solutions of the polymer and the surfactant using atomic force microscopy. The polymer is the triblock copolymer poly(ethylene oxide-block-propylene oxide-block-ethylene oxide) (Pluronic F108), and the surfactant is sodium dodecyl sulfate (SDS). In F108-only solutions, the force between the silica particle and the silica plate is primarily repulsive for polymer concentrations ranging from 200 to 10 000 ppm. In SDS-only solutions, the net force between the silica surfaces is repulsive at all separations for concentrations below 16 mM SDS and is attractive with a structural force character above 16 mM SDS. When both F108 and SDS are present in the solution, a net attractive force is observed at SDS concentrations as low as 4 mM, a factor of 2 below the critical micelle concentration (cmc). We attribute this synergistic effect to the complexation of F108 with SDS in bulk solution at a critical aggregation concentration (cac) that is less than the cmc, producing a relatively large, charged complex that creates a significant depletion force between the particle and plate.  相似文献   

10.
A stable composite film of multi-walled carbon nanotubes (MWNTs) with a Nafion™ cation exchanger membrane is prepared using a simple and reproducible cast deposition methodology. The MWNTs are cylindrical with diameters in the range of 40–60 nm and a length of up to several micrometers. They provide sufficiently high electrical conductivity across the film. Nafion™ acts both as a binder for the carbon structure and selectivity introducing matrix as shown by voltammetric experiments with the Fe(CN)63−/4− redox system.The anodic stripping responses for Cd and Pb metal accumulated from a solution of 0.2–1 µM in 0.1 M acetate buffer are demonstrated and optimized. The limit of detection under these conditions is typically 51 nM. The feasibility of using the MWNTs/Nafion™ thin film electrode for the anodic stripping voltammetric determination of cadmium and lead in 0.1 M acetate buffer in the presence of surfactants/interferents is examined. Sodium dodecyl sulfate (SDS), Triton X-100 (TX-100), dodecyl pyridinium chloride (DPC), and bovine serum albumin (BSA) were examined as four typical interferents. Relatively small enhancing and suppressing effects on the stripping peak currents for Cd and for Pb detection at the MWNTs/Nafion™ film modified electrode were observed. The MWNTs/Nafion™ thin film electrode performed very well even in the presence of the cationic surfactant DPC and could in future be of wider applicability.  相似文献   

11.
Interactions in aqueous solutions of different generations of poly(amidoamine) (PAMAM) dendrimers containing amine, hydroxyl, or delta-glucolactone functional groups at the periphery with the anionic surfactant sodium dodecyl sulfate (SDS) were investigated. We used a SDS-specific electrode (EMF) for SDS monomer concentration monitoring, isothermal titration calorimetry (ITC) for binding information, and small angle neutron scattering (SANS) for structural studies. ITC experiments monitoring the interaction of the dendrimers with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic hexaethylene glycol mono-n-dodecyl ether (C12EO6) showed no significant binding effects. In contrast, SDS binds to all of the above dendrimers. EMF and ITC data demonstrated a regular trend for both the onset of binding and binding saturation as the generation in each family of dendrimers increased. In addition, generation G6 exhibited a noncooperative binding process at very low SDS concentrations. Furthermore, the onset of cooperative binding in the EMF experiments started at lower concentrations as the weight % (w/v), the size, and the numbers of the internal or surface groups increased. On the other hand, the binding capacity of the dendrimers showed only a small dependence on the above parameters. At SDS concentrations approaching the binding limit and also at selective concentrations within the binding range, SANS measurements indicated that in all cases the bound surfactant is in the micellar form. From the electromotive force (EMF) measurements, ITC data, and SANS data, the stoichiometry of the supramolecular complexes was determined.  相似文献   

12.
Ultraviolet spectrometric study of alizarin red S (ARS) showed the substantial change in dye spectra by cationic CTAB as compared to anionic SDS and nonionic TX-100 surfactant. High spectral change by CTAB confirms the anionic nature of ARS dye and thus ARS-CTAB complex formation takes place due to electrostatic force of attraction. A little spectral change by SDS is the result of similarly charged repulsive forces that overcome weak hydrophobic-hydrophobic interaction between dye and surfactant micelles. TX-100 exhibited moderate spectral effect responsive to weak hydrophobic-hydrophobic interaction alone. MEUF study of ARS dye justified the spectral changes and dye rejection percentage (R) decreases in the following order: cationic > nonionic > anionic surfactant. Permeate flux (J) slightly decreases in presence of CTAB and it remains virtually constant for both SDS and TX-100. Addition of copper salt (i.e., CuCl2) in dye-CTAB complex solution, favors rejection (%) removing dye and copper simultaneously via micellar enhanced ultrafiltration.  相似文献   

13.
A method for piroxicam determination based on adsorptive stripping voltammetric techniques, using conventional and chemically modified carbon paste electrodes in micellar media, is described. The employed surfactants were sodium dodecyl sulfate (SDS), Triton X-100, Triton X-405, Tween 80 and Brij 30. However, the purpose of this paper is, at present, to research the use of surfactants as carbon paste modifier because one of the mechanisms of hydrophobic drugs ad-accumulation on the carbon paste electrode is based on the chemical affinity. Besides, because of the water piroxicam insolubility, a special aqueous medium, such as a surfactant solution above its c.m.c. was used, this micellar media being very advantageous in relation to the use of organic or aqueous-organic media, in order to dissolve the studied drug and to remove the problems derived from the organic solvents use. In addition, a piroxicam ad-accumulation increase, on surfactant modified carbon paste electrode, with the surfactant mass incorporated into the electrode, was observed.  相似文献   

14.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

15.
Stability of the manganese dioxide (MnO2) suspensions by non-ionic guar gum (GG) in the absence or presence of the surfactants: anionic sodium dodecyl sulphate (SDS), cationic hexadecyltrimethylammonium bromide (CTAB) and non-ionic Triton X-100 (t-octylphenoxypolyethoxyethanol) and their equimolar mixtures (SDS/TX-100; CTAB/TX-100) was measured using turbidity. The obtained results of the manganese dioxide suspensions stability were discussed together with the adsorption data and with the data concerning the thicknesses of the adsorption layers. In order to gain more information about the structure of the electric double layer surface charge density and the zeta potential measurements were performed. The obtained results show that the addition of guar gum to the MnO2 suspensions increases MnO2 stability. The larger this increase is, the higher is the concentration of the polymer (concentration range 10–200 ppm). Moreover, the addition of single surfactants also causes the increase in the effectiveness of stabilizing the manganese dioxide suspensions. The reason for that is formation of multilayer complexes between the polymer and the surfactants. In such a system both the adsorption of polymer and the thickness of polymer adsorption layer increase. The greatest increase in the stability of MnO2/GG suspensions was provided by the mixture of anionic and non-ionic surfactants due to a strong synergistic effect. Also, mixing the polymer and two surfactants reduces the stability of the suspension.  相似文献   

16.
高稳定的囊泡广泛用于制作生物模型、药物输送以及合成纳米材料的模板。获得高稳定囊泡结构的重要方法之一是用聚合反应固定囊泡结构。作为可聚合囊泡制备的前期基础工作,研究了一种可聚合的囊泡体系:1-丙烯基-2,2,二甲基-十二烷基溴化胺(ADDB)和ADDB与十二烷基磺酸钠(SDS)的等摩尔比混合体系。该囊泡体系即使在高浓度盐水中也能够自发地形成均相的囊泡溶液。在聚合之前,采用动态激光光散射(DLS)、冷冻蚀刻透射电镜(FF-TEM)技术研究了可聚合囊泡的盐效应。DLS测试发现没有盐存在时,囊泡大小为83 nm,盐的浓度增加到250 mmol/L时,囊泡尺寸增大到250 nm。然而继续增大盐浓度到1000 mmol/L, 囊泡尺寸减小到180nm. FF-TEM结果发现盐浓度小于150 mM时, 单个囊泡为70 nm左右,然而明显存在囊泡的絮凝与融合;当盐浓度增加到400 mM时,单个囊泡尺寸减小到20 nm. 因此DLS 观测到囊泡尺寸增大的原因是由于囊泡的絮凝与融合;而尺寸减小的原因是由于在高盐浓度下,盐屏蔽了带电颗粒之间的静电相互作用,在熵增的驱使下,大囊泡变成小囊泡。  相似文献   

17.
The distribution of TX-100, a nonionic surfactant, over solid surfaces in cyclohexane (CH), with quartz being preferentially wetted by aqueous solutions of TX-100, is studied using radioactive labels and wetting. From low-concentration solutions, the surfactant is adsorbed from the aqueous phase on the quartz surface preferentially near the three-phase contact line. At higher TX-100 concentrations, adsorption on the solid surface occurs from both liquid phases. The TX-100 distribution on quartz influences the kinetics of acquisition of the contact angle of preferential wetting.  相似文献   

18.
The interfacial tensions between ethylene and an aqueous solution of SDS were measured using the pendant-drop method at 274.2 and 278.2 K and in the pressure range from 0.1 to 3.1 MPa, including hydrate formation points. The concentrations of sodium dodecyl sulfate (SDS) aqueous solution were 0, 100, 300, 500, 600, 700, 800, 900, and 1000 ppm. The effects of pressure on the critical micelle concentration (CMC) and the surface excess concentration were studied. It was demonstrated that both the CMC and the saturated surface excess concentration decreased with the increase of pressure.  相似文献   

19.
Sonolysis of argon-saturated aqueous solutions of the nonvolatile surfactants sodium dodecyl sulfate (SDS) and sodium 1-pentanesulfonate (SPSo) was investigated at three ultrasonic frequencies under both continuous wave (CW) and pulsed ultrasound. Secondary carbon-centered radicals were detected by spin trapping using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and electron paramagnetic resonance (EPR) spectroscopy. Following sonolysis, -*CH- radicals were observed for both surfactants under both sonication modes. Under CW at 354 kHz, the maximum plateau -*CH- radical yield was higher for SPSo than for SDS, indicating that SDS, which is more surface active under equilibrium conditions, accumulates at the gas/solution interface of cavitation bubbles to a lesser degree, compared with the less surface active surfactant, SPSo. However, after sonolysis (354 kHz) under pulsed ultrasound with a pulse length of 100 ms and an interval of 500 ms, the -*CH- radical yield at the plateau concentrations was higher for SDS than for SPSo due to increased amounts of SDS accumulation on the bubble surfaces. In contrast to the findings following sonolysis at 354 kHz, sonolysis of aqueous surfactant solutions at 620 kHz and 803 kHz showed a higher -*CH- radical yield for SDS compared with SPSo under CW but lower -*CH- radical yield with increasing pulsing interval, indicating a frequency dependence on accumulation. Results indicate that pulsing the ultrasonic wave has a significant effect on the relative adsorption ability of n-alkyl surfactants at the gas/solution surface of cavitation bubbles.  相似文献   

20.
The effect of ionic strength on association between the cationic polysaccharide chitosan and the anionic surfactant sodium dodecyl sulfate, SDS, has been studied in bulk solution and at the solid/liquid interface. Bulk association was probed by turbidity, electrophoretic mobility, and surface tension measurements. The critical aggregation concentration, cac, and the saturation binding of surfactants were estimated from surface tension data. The number of associated SDS molecules per chitosan segment exceeded one at both salt concentrations. As a result, a net charge reversal of the polymer-surfactant complexes was observed, between 1.0 and 1.5 mM SDS, independent of ionic strength. Phase separation occurs in the SDS concentration region where low charge density complexes form, whereas at high surfactant concentrations (up to several multiples of cmc SDS) soluble aggregates are formed. Ellipsometry and QCM-D were employed to follow adsorption of chitosan onto low-charged silica substrates, and the interactions between SDS and preadsorbed chitosan layers. A thin (0.5 nm) and rigid chitosan layer was formed when adsorbed from a 0.1 mM NaNO3 solution, whereas thicker (2 nm) chitosan layers with higher dissipation/unit mass were formed from solutions at and above 30 mM NaNO3. The fraction of solvent in the chitosan layers was high independent of the layer thickness and rigidity and ionic strength. In 30 mM NaNO3 solution, addition of SDS induced a collapse at low concentrations, while at higher SDS concentrations the viscoelastic character of the layer was recovered. Maximum adsorbed mass (chitosan + SDS) was reached at 0.8 times the cmc of SDS, after which surfactant-induced polymer desorption occurred. In 0.1 mM NaNO3, the initial collapse was negligible and further addition of surfactant lead to the formation of a nonrigid, viscoelastic polymer layer until desorption began above a surfactant concentration of 0.4 times the cmc of SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号