首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undecagold cluster compounds [Au11(BINAP)4X2]+ (X = Cl and Br) were synthesized by chemical reduction of the corresponding precursor complexes, Au2X2(BINAP), where BINAP represents the bidentate phosphine ligand 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl. The circular dichroism spectra of Au11 stabilized by the enantiomers [Au11(R-BINAP)4X2]+ and [Au11(S-BINAP)4X2]+ exhibited intense and mirror-image Cotton effect, whereas those of Au11(3+) clusters stabilized by achiral monodentate phosphine ligands did not. The origin of the chiroptical activity of [Au11(BINAP)4X2]+ is discussed in the context of the structural deformation of the Au11(3+) core.  相似文献   

2.
Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting.  相似文献   

3.
Ligand-stabilized aluminum clusters are investigated by density functional theory calculations. Analysis of Kohn-Sham molecular orbitals and projected density of states uncovers an electronic shell structure that adheres to the superatom complex model for ligand-stabilized aluminum clusters. In this current study, we explain how the superatom complex electron-counting rule is influenced by the electron-withdrawing ligand and a dopant atom in the metallic core. The results may guide the prediction of new stable ligand-stabilized (superatom) complexes, regardless of core and electron-withdrawing ligand composition.  相似文献   

4.
Theoretical and experimental approaches have been taken in a study of the feasibility of using the method of stationary saturation of ESR spectra in studying processes of dipole relaxation of paramagnetic centers in magnetically dilute solids. In the example of a system consisting of two kinds of paramagnetic centers, relaxation characteristics have been formulated by the stationary saturation method and the electron spin-echo method. It has been established that, with certain limitations and the use of a correct workup of the experiment, the stationary saturation method can be applied successfully in determining the relaxation characteristics of paramagnetic centers and features of their spatial position. Results obtained by this method are discussed in the example of systems in which electron-nucleus interaction makes a substantial contribution to the phase relaxation process.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 5, pp. 520–528, September–October, 1989.  相似文献   

5.
Small metal clusters, like Au55(PPh3)12Cl6, which fall in the size regime of 1–2 nm are colloidal nanoparticles with quantum properties in the transitional range between metals and semiconductors. These chemically tailored quantum dots show regarding the Quantum Size Effect (QSE) a level splitting between 20 and 100 meV, increasing from small particle sizes to the molecular state. The organic ligand shell surrounding the cluster acts like a dielectric spacer generating capacitances between neighboring clusters down to 10–18 F. Therefore, charging effects superposed by level spacing effects can be observed. The ligand-stabilized colloidal quantum dots in condensed state can be described as a novel kind of artificial solid with extremely narrow mini or hopping bands depending on the chemically adjustable thickness of the ligand shell and its properties. Since its discovery, the Single Electron Tunneling (SET) effect has been recognized to be the fundamental concept for ultimate miniaturization in microelectronics. The controlled transport of charge carriers in arrangements of ligand-stabilized clusters has been observed already at room temperature through Impedance Spectroscopy (IS) and Scanning Tunneling Spectroscopy (STS). This reveals future directions with new concepts for the realization of simple devices for Single Electron Logic (SEL). Part I presents the fundamental aspects of small ligand-stabilized metal clusters as well as their physical properties, emphasizing their electronic and optical properties with respect to dielectric response at ambient temperatures.  相似文献   

6.
7.
The electronic spectral lineshape of an impurity molecule in a cluster is calculated. Both a rigid (solid-like) and a non-rigid (droplet-like) model for the cluster are considered and compared. The spectrum is calculated using the spectral density J(ω) which is related to the correlation function of the time-dependent enegy gap between the two electronic states. Our calculations demonstrate how the information regarding individual eigenstates is lost under the broadened lineshape envelope in large clusters.  相似文献   

8.
A theoretical analysis of inelastic electron tunneling spectroscopy (IETS) experiments conducted on molecular junctions is presented, where the second derivative of the current with respect to voltage is usually plotted as a function of applied bias. Within the nonperturbative computational scheme, adequate for arbitrary parameters of the model, we consider the virtual conduction process in the off-resonance region. Here we study the influence of few crucial factors on the IETS spectra: the strength of the vibronic coupling, the phonon energy, and the device working temperature. It was also shown that weak asymmetry in the IETS signal with respect to bias polarity is obtained as a result of strongly asymmetric connection with the electrodes.  相似文献   

9.
Motivated by the recent experiments of the Swedish group [M. Tchaplyguine, R. R. Marinho, M. Gisselbrecht et al., J. Chem. Phys. 120, 345 (2004)], we simulate the photoelectron spectra of pure xenon and argon clusters. The clusters are modeled using molecular dynamics with Hartree-Fock-dispersion type pair potentials while the spectrum is calculated as the sum of final state energy shifts of the atoms ionized within the cluster relative to the isolated gas phase ion. A self-consistent polarization formalism is used. Since signal electrons must travel through the cluster to reach the detector, we have accounted for the attenuation of the signal intensity by integrating an exponentially decaying scattering expression over the geometry of the cluster. Several different approaches to determining the required electron mean free paths (as a function of electron kinetic energy) are considered. Our simulated spectra are compared to the experimental results.  相似文献   

10.
Small metal clusters, like Au55(PPh3)12Cl6, which fall in the size regime of 1–2 nm are colloidal nanoparticles with quantum properties in the transitional range between metals and semiconductors. These chemically tailored quantum dots show by the Quantum Size Effect (QSE) a level splitting between 20 and 100 meV, increasing from small particle sizes to the molecular state. The organic ligand shell surrounding the cluster acts like a dielectric spacer generating capacitances between neighboring clusters down to 10–18F. Therefore, charging effects superposed by level spacing effects can be observed. The ligand-stabilized colloidal quantum dots in condensed state can be described as a novel kind of artificial solid with extremely narrow mini or hopping bands depending on the chemically adjustable thickness of the ligand shell and its properties. Since its discovery, the Single Electron Tunneling (SET) effect has been recognized to be the fundamental concept for ultimate miniaturization in microelectronics. The controlled transport of charge carriers in arrangements of ligand-stabilized clusters has been observed already at room temperature through Impedance Spectroscopy (IS) and Scanning Tunneling Spectroscopy (STS). This reveals future directions with new concepts for the realization of simple devices for Single Electron Logic (SEL). Part II presents models and connections between microscopic and macroscopic level, regardless of whether there already exist suitable nanoscale metal cluster compounds, and is aimed at the ultimate properties for a possible application in microelectronics.  相似文献   

11.
We present results of semiclassical simulations of the electronic spectra and dynamics of aniline-Arn (1≤n≤3) clusters. The spectral density formalism of Mukamel [3] is used to generate the spectra from the time dependent energy difference of the S0 and S1 states of aniline solvated by the argon atoms. A repulsive Ar-N interaction is incorporated in the Hamiltonian of the S1 state; this term permits a quantitative prediction of the origin shifts of the S1<--S0 transition (both red and blue shifts) for all the clusters studied. The temperature dependence of the spectrum of aniline-Ar2 is correlated with the underlying dynamics of this cluster.  相似文献   

12.
The absorption of NO2 molecules by a water cluster containing 25 molecules was studied by molecular dynamics. The calculated dielectric characteristics of a system of (NO2) i (H2O)25 clusters (1 ≤ i ≤ 6) were compared with similar data for a cluster system of pure water. The ability of the disperse water system that trapped NO2 molecules to absorb IR radiation increased, and the rate of the absorbed energy emission decreased. The Raman spectrum of the disperse system that absorbed NO2 molecules changed most significantly in the low-frequency range. The emission time of cluster-generated radiation was much smaller than the lifetime of the clusters.  相似文献   

13.
Nitrate ion adsorption by water clusters is studied using the molecular dynamics method combined with a polarizable model of flexible molecules. It is established that successive addition of one to six NO 3 ? ions to an (H2O)50 cluster decreases the averaged electrical potential related to the center of masses of water molecules. The (H2O)50 cluster retains its thermodynamic stability, provided that no more than three nitrate ions are added to it. After NO 3 ? ions are adsorbed, the real and imaginary components of the dielectric permittivity and the intensity of the Raman spectrum decrease, while the intensity of the IR absorption spectrum increases. Moreover, ion adsorption by the water cluster reduces the IR absorption coefficient and refractive index.  相似文献   

14.
Size selected silicon clusters have been isolated in rare gas matrices and studied by optical absorption spectroscopy. The clusters were produced in a pulsed laser vaporization source, size selected with a quadrupole mass spectrometer and deposited at low energies into a cocondensed krypton matrix held at T<20 K. A comparison of the optical spectra of ten atom wide bands (Si25-Si35, Si35-Si45 and Si45-Si55) shows the general size evolution of the optical properties. Single cluster sizes have also been isolated and show somewhat sharper spectra than the bands. The measured spectra show similarities to spectra calculated using Mie theory and bulk optical constants. Cluster-cluster agglomeration was studied by evaporating the inert gas matrix. The results suggest that the clusters agglomerate into larger particles even under the mildest "soft landing" conditions.  相似文献   

15.
Infrared spectra of the OCS-He van der Waals complex and of OCS-He(N) clusters have been studied in the region of the OCS nu1 fundamental band using a tunable diode laser to probe a pulsed supersonic slit jet. For the complex, the spectrum of the normal isotope, 16O12C32S-4He, has been considerably extended and the 34S- and 13C-substituted forms have been recorded for the first time. The data could be analyzed satisfactorily using a conventional asymmetric rotor Hamiltonian with sextic centrifugal distortion terms. For the clusters, the 34S- and 13C-substituted forms have been observed and assigned for N = 2-7, including some transitions with higher J values than previously reported for the normal isotope, e.g., R5. The observed vibrational shifts, relative to the free OCS molecule, were very similar to those of the normal isotope, and most of the difference could be explained by simple scaling. These results constitute a subtle and precise probe of intermolecular forces and dynamical effects in a system which is of current interest for cluster studies.  相似文献   

16.
We calculate the photoelectron spectrum of small mono-niobium carbide clusters (NbC(n)) using density functional theory for clusters with n = 2-7 and the symmetry adapted cluster configuration interaction method for the smallest clusters (n = 2-4). Theoretical spectra of a single structure cannot explain all peaks present in the spectrum measured by Zhai et al. [J. Chem. Phys. 115, 5170 (2001)]. However, we can match all peaks in the experimental spectra if we assume that the beam contains a combination of cyclic and linear structures. This finding is even more surprising given the fact that some of the excited metastable geometries have energies as large as 0.5 eV above the ground state. Our result is confirmed by both theoretical approaches. We suggest further experiments, using additional beam cooling, to corroborate this observation.  相似文献   

17.
Due to a nanotechnology boom in science and technology, the metal nanoclusters or nanoparticles stabilized by polymers and organic ligands have achieved much attention recently all over the world. We have studied on the preparation of polymer-stabilized metal nanoclusters by chemical methods, and applied them mainly to catalyses. Here the recent progresses in our group are presented in the structure control of bimetallic and trimetallic nanoclusters and in the applications of metal nanoclusters not only to the catalyses but also to the sensing responsive to pH and molecular recognition, and to the electro-optic properties of liquid-crystalline display rapidly responsive to frequency modulation. Preparation of trimetallic nanoclusters with a triple core/shell structure is especially emphasized to serve as a very active catalyst at a special atomic ratio of three elements.  相似文献   

18.
We have examined the effects of intermolecular interactions on the inelastic electron tunneling spectroscopy (IETS) of model systems: a pair of benzenethiol or a pair of benzenedithiol sandwiched between gold electrodes. The dependence of the IETS on the mutual position of and distance between the paired molecules has been predicted and discussed in detailed. It is shown that, although in most cases, there are clear spectral fingerprints present which allow identification of the actual structures of the molecules inside the junction. Caution must be exercised since some characteristic lines can disappear at certain symmetries. The importance of theoretical simulation is emphasized.  相似文献   

19.
20.
We report ab initio calculations for the electronic and structural properties of V(n), V(n) (-), and V(n) (+) clusters up to n=8. We performed the calculations using a real-space pseudopotential method based on the local spin density approximation for exchange and correlation. This method assumes no explicit basis. Wave functions are evaluated on a uniform grid; only one parameter, the grid spacing, is used to control convergence of the electronic properties. Charged states are easily handled in real space, in contrast to methods based on supercells where Coulombic divergences require special handling. For each size and charge state, we find the lowest energy structure. Our results for the photoelectron spectra, using the optimized structure, agree well with those obtained by experiment. We also obtain satisfactory agreement with the measured ionization potential and electron affinity, and compare our results to calculations using an explicit basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号