首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we propose a quasi-3D continuum model to study the rate-independent hysteresis phenomenon in phase transitions of a slender shape memory alloy (SMA) cylinder subject to the uniaxial tension. Based on the three-dimensional field equations and the traction-free boundary conditions, by using a coupled series-asymptotic expansion method, we manage to express the total elastic potential energy of the cylinder in terms of the leading order term of the axial strain. We further consider the rate-independent dissipation effect in a purely one-dimensional setting. The mechanical dissipation functions are also expressed in terms of the axial strain. The equilibrium configuration of the cylinder is then determined by using the principle of maximizing the total energy dissipation. An illustrative example with some special chosen material constants is further considered. Free end boundary conditions are proposed at the two ends of the cylinder. By conducting a phase plane analysis and through some calculations, we obtain the analytical solutions of the equilibrium equation. We find that the engineering stress–strain curves corresponding to the obtained solutions can capture some important features of the experimental results. It appears that the analytical results obtained in this paper reveal the multiple solutions nature of the problem and shed certain light on the instability phenomena during the phase transition process.  相似文献   

2.
In this paper, we study the localization phenomena in a slender cylinder composed of an incompressible hyperelastic material subjected to axial tension. We aim to construct the analytical solutions based on a three-dimensional setting and use the analytical results to describe the key features observed in the experiments by others. Using a novel approach of coupled series-asymptotic expansions, we derive the normal form equation of the original governing nonlinear partial differential equations. By writing the normal form equation into a first-order dynamical system and with the help of the phase plane, we manage to solve two boundary-value problems analytically. The explicit solution expressions (in terms of integrals) are obtained. By analyzing the solutions, we find that the width of the localization zone depends on the material parameters but remains almost unchanged for the same material in the post-peak region. Also, it is found that when the radius–length ratio is relatively small there is a snap-back phenomenon. These results are well in agreement with the experimental observations. Through an energy analysis, we also deduce the preferred configuration and give a prediction when a snap-through can happen. Finally, based on the maximum-energy-distortion theory, an analytical criterion for the onset of material failure is provided.  相似文献   

3.
In the experiments on stress-induced phase transitions in SMA strips, several interesting instability phenomena have been observed, including a necking-type instability (associated with the stress drop), a shear-type instability (associated with the inclination of the transformation front) and an orientation instability (associated with the switch of the inclination angle). In order to shed more lights on these phenomena, in this paper we conduct an analytical study. We consider the problem in a three-dimensional setting, which implies that one needs to study the difficult problem of solution bifurcations of high-dimensional nonlinear partial differential equations. By using the smallness of the maximum strain, the thickness and width of the strip, we use a methodology, which combines series expansions and asymptotic expansions, to derive the asymptotic normal form equations, which can yield the leading-order behavior of the original three-dimensional field equations. An important feature of the second normal form equation is that it contains a turning point for the localization (necking) solution of the first equation. It is the presence of such a turning point which causes the inclination of the phase transformation front. The WKB method is used to construct the asymptotic solutions, which can capture the shear instability and the orientation instability successfully. Our analytical results reveal that the inclination of the transformation front is a phenomenon of localization-induced buckling (or phase-transition-induced buckling as the localization is caused by the phase transition). Due to the similarities between the development of the Luders band in a mild steel and the stress-induced transformations in a SMA, the present results give a strong analytical evidence that the former is also caused by macroscopic effects instead of microscopic effects. Our analytical results also reveal more explicitly the important roles played by the geometrical parameters.  相似文献   

4.
5.
 We describe a number of different phenomena seen in the free-surface flow inside a partially filled circular cylinder which is rotated about its horizontal axis of symmetry. At low angular velocities the flow settles into a steady two-dimensional flow with a front where the coating film coalesces with the pool at the bottom of the cylinder. This mode becomes unstable at higher angular velocities, initially to a sloshing mode on the rising side of the coating film and then to an axial instability on the front. The undulations that appear on the front grow into large-amplitude stationary patterns with cusp-like features for some parameter values. At still higher angular velocities and volume fractions, a number of different inertial instabilities and patterns appear. We present a phase diagram of the various transitions and characterize some of the more prominent instabilities and patterns in detail, along with some possible mechanisms for the observed behaviour. Received: 13 April 1996 / Accepted: 13 June 1996  相似文献   

6.
We study the asymptotic behavior of a one-dimensional, dynamical model of solid-solid elastic transitions in which the phase is determined by an order parameter. The system is composed of two coupled evolution equations, the mechanical equation of elasticity which is hyperbolic and a parabolic equation in the order parameter. Due to the strong coupling and the lack of smoothing in the hyperbolic equation, the asymptotic behavior of solutions is difficult to determine using standard methods of gradient-like systems. However, we show that under suitable assumptions all solutions approach the equilibrium set weakly, while the phase field stabilizes strongly.  相似文献   

7.
The method of asymptotic integration of equations of elasticity [1] is used to study the behavior of the solution of a 3D elasticity problem for a radially inhomogeneous transversally isotropic hollow cylinder of small thickness. Under the assumption that the load is sufficiently smooth, the asymptotic method [1] is used to construct inhomogeneous solutions. An algorithm for constructing exact particular solutions of the equilibrium equations is given for loads of specific types in the case where the cylinder lateral surface is loaded by forces polynomially depending on the axial coordinate. Then the homogeneous solutions are constructed. The asymptotic expansions of homogeneous solutions are obtained, and the above analysis is used to explain the character of the stress-strain state.  相似文献   

8.
We model long rod-like molecules, such as DNA and coiled-coil proteins, as one-dimensional continua with a multi-well stored energy function. These molecules suffer a structural change in response to large forces, characterized by highly typical force-extension behavior. We assume that the structural change proceeds via a moving folded/unfolded interface, or phase boundary, that represents a jump in strain and is governed by the Abeyaratne–Knowles theory of phase transitions. We solve the governing equations using a finite difference method with moving nodes to represent phase boundaries. Our model can reproduce the experimental observations on the overstretching transition in DNA and coiled-coils and makes predictions for the speed at which the interface moves. We employ different types of kinetic relations to describe the mobility of the interface and show that this leads to different classes of experimentally observed force-extension curves. We make connections with several existing theories, experiments and simulation studies, thus demonstrating the effectiveness of the phase transitions-based approach in a biological setting.  相似文献   

9.
This paper examines the steady thermocapillarybuoyant convection in a shallow annular pool subjected to a radial temperature gradient. A matched asymptotic theory is used to obtain the asymptotic solutions of the flow and thermal fields in the case of small aspect ratios,which is defined as the ratio of the layer thickness to the gap width. The flow domain is divided into the core region away from the cylinder walls and two end regions near each cylinder wall. Asymptotic solutions are obtained in the core region by solving the core and end flows separately and then joining them through matched asymptotic expansions. For the system of silicon melt,the asymptotic solutions are compared with the results of numerical simulations. It is found that the two kinds of solutions have a good agreement in the core region for a small aspect ratio. With the increase of aspect ratio,the applicability of the present asymptotic solutions decreases gradually.  相似文献   

10.
This work is devoted to the study of steady thermocapillary-buoyant convection in a system of two horizontal superimposed immiscible liquid layers filling a lateral heated thin annular pool.The governing equations are solved using an asymptotic theory for the aspect ratios ε→ 0.Asymptotic solutions of the velocity and temperature fields are obtained in the core region away from the cylinder walls.In order to validate the asymptotic solutions,numerical simulations are also carried out and the results are compared to each other.It is found that the present asymptotic solutions are valid in most of the core region.And the applicability of the obtained asymptotic solutions decreases with the increase of the aspect ratio and the thickness ratio of the two layers.For a system of gallium arsenide (lower layer) and boron oxide (upper layer),the buoyancy slightly weakens the thermocapillary convection in the upper layer and strengthens it in the lower layer.  相似文献   

11.
激励Stuart-Landau方程的研究--周期解、稳定性及流动控制   总被引:1,自引:0,他引:1  
解析得出了有外部激励的Stuart-Landau(S-L)方程的频率锁定周期解,对这些解与外部激励振幅和频率的依赖关系做了详细研究,并用周期系统稳定性理论确定了解的稳定性边界.还对S-L方程所描述的流动控制效果进行了研究,发现由于外部激励的作用,稳定的锁频解可能比原来的饱和解能量减少了,外部的控制最多能使扰动能量减少为原来的一半.  相似文献   

12.
For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder.Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder.The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters.The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case,as well as a variational hysteresis loop for the transformation,providing a mechanism for easy actuation control.When the gradient disappears,the model can degenerate to the non-gradient case.  相似文献   

13.
This paper considers several problems involving coupled heat–moisture–air flow indeformable unsaturated media. A set of coupled non-linear governing equations expressed in terms of displacements, capillary pressure, air pressure and temperature are used in the analysis. The mathematical model accounts for fully coupled heat and moisture flow, volume strain effects on water-air-heat flow, stress and temperature dependence of the water retention curve, heat sink due to thermal expansion, phase change between liquid water and vapour water, and compressibility of liquid water. Numerical solutions are obtained by using the finite element method. Comparisons with existing analytical and experimental results for problems involving infiltration, drying–rewetting (hysteresis effects) and heating confirm the general validity of the present mathematical model. Coupled fields in a confined clay cylinder are also examined. It is found that consideration of absorbed liquid flow due to thermal gradients (thermo-osmosis effect) results in increased drying and shrinkage near the heated boundary. The case of a confined clay cylinder under combined heating and infiltration is also studied. Important features of coupled fields are discussed.  相似文献   

14.
分块法研究圆柱绕流升阻力   总被引:6,自引:1,他引:6  
使用新的分块耦合方法,分别对单圆柱和串列双圆柱绕流进行了数值模拟.对于单圆柱绕流,低Re下计算所得到的定常涡尺寸与实验非常接近.对于串列双圆柱绕流,研究分析了改变双圆柱中心间距对上下游圆柱的升阻力系数和脉动频率所产生的影响,计算结果与实验非常吻合,为进一步研究涡致振动提供了依据.  相似文献   

15.
In this paper, we present the results of an investigation into the flow of a series of viscoelastic wormlike micelle solutions past a confined circular cylinder. Although this benchmark flow has been studied in great detail for polymer solutions, this paper reports the first experiments to use a viscoelastic wormlike micelle solution as the test fluid. The flow kinematics, stability and pressure drop were examined for two different wormlike micelle solutions over a wide range of Deborah numbers and cylinder to channel aspect ratios. A combination of particle image velocimetry and pressure drop measurements were used to characterize the flow kinematics, while flow-induced birefringence measurements were used to measure the micelle deformation and alignment in the flow. The pressure drop was found to decrease initially due to the shear thinning of the test fluid before increasing at higher flow rates as elastic effects begin to dominate the flow. Above a critical Deborah number, an elastic instability was observed for just one of the test fluids studied, the other remained stable for all Deborah number tested. Flow-induced birefringence and velocimetry measurements showed that observed instability originates in the extensional flow in the wake of the cylinder and appears not as periodic counter-rotating vortices as has been observed in the flow of polymer solutions past circular cylinders, but as a chaotic rupture event in the wake of the cylinder that propagates axially along the cylinder. Reducing the cylinder to channel aspect ratio and the degree of shearing introduced by the channel walls had a weak impact on the stability of the flow. These measurements, when taken in conjunction with previous work on flow of wormlike micelle solutions through a periodic array of cylinders, definitively show that the instability can be attributed to a breakdown of the wormlike micelle solutions in the extensional flow in the wake of the cylinder.  相似文献   

16.
Aqueous solutions of cationic surfactant systems with strongly binding counterions show the striking phenomenon of shear induced phase transitions. At low shear rates or angular frequencies, the solutions exhibit Newtonian flow. At high rates of shear, however, the rheological properties change dramatically. Above a well defined threshold value of the velocity gradient, a supermolecular structure can be formed from micellar aggregates. This shear induced structure (SIS) behaves like a gel and exhibits strong flow birefringence. The formation of the shear induced structure is very complicated and depends on the specific conditions of the surfactant system. In this paper we discuss new results which have been obtained from rheological measurements and from flow birefringence data. We examine the stability of the shear induced state as a function of temperature, surfactant concentration and salt concentration and we analyse the effect of solubilisation of alcohols and hydrocarbons. The results are interpreted in terms of a kinetic model which accounts for the observed behavior.Dedicated to the 60. birthday of Prof. H. Harnisch, Hoechst AGPartly presented at the 2nd Conference of European Rheologists, Prague, June 17–20, 1986  相似文献   

17.
This paper considers the onset of free convection in a horizontal fluid-saturated porous layer with uniform heat generation. Attention is focused on cases where the fluid and solid phases are not in local thermal equilibrium, and where two energy equations describe the evolution of the temperature of each phase. Standard linearized stability theory is used to determine how the criterion for the onset of convection varies with the inter-phase heat transfer coefficient, H, and the porosity-modified thermal conductivity ratio, γ. We also present asymptotic solutions for small values of H. Excellent agreement is obtained between the asymptotic and the numerical results.  相似文献   

18.
A study is made of the dynamics of oscillating systems with a slowly varying parameter. A slowly varying forcing periodically crosses a critical value corresponding to a pitchfork bifurcation. The instantaneous phase portrait exhibits a centre when the forcing does not exceed the critical value, and a saddle and two centres with an associated double homoclinic loop separatrix beyond this value. The aim of this study is to construct a Poincaré map in order to describe the dynamics of the system as it repeatedly crosses the bifurcation point. For that purpose averaging methods and asymptotic matching techniques connecting local solutions are applied. Given the initial state and the values of the parameters the properties of the Poincaré map can be studied. Both sensitive dependence on initial conditions and (quasi) periodicity are observed. Moreover, Lyapunov exponents are computed. The asymptotic expressions for the Poincaré map are compared with numerical solutions of the full system that includes small damping.  相似文献   

19.
We study the transient Couette flow of an Oldroyd fluid that fills the gap between two circular cylinders when a constant torque is suddenly applied to the inner cylinder, the outer one being kept motionless. Contrarily to most former studies, the inertia of the moving boundary is not neglected. We give the exact solutions of this problem for a wide class of initial conditions and we present a rigorous asymptotic analysis for small gap devices when the initial state is stationary. The case of Grade 2 fluids is also considered and treated. We also show in some experimental tests, that the knowledge of the relaxation curve of the angular velocity of the rotor can be used to identify the parameters of the model.  相似文献   

20.
We study a class of systems of reaction–diffusion equations in infinite cylinders which arise within the context of Ginzburg–Landau theories and describe the kinetics of phase transformation in second-order or weakly first-order phase transitions with non-conserved order parameters. We use a variational characterization to study the existence of a special class of traveling wave solutions which are characterized by a fast exponential decay in the direction of propagation. Our main result is a simple verifiable criterion for existence of these traveling waves under the very general assumptions of non-linearities. We also prove boundedness, regularity, and some other properties of the obtained solutions, as well as several sufficient conditions for existence or non-existence of such traveling waves, and give rigorous upper and lower bounds for their speed. In addition, we prove that the speed of the obtained solutions gives a sharp upper bound for the propagation speed of a class of disturbances which are initially sufficiently localized. We give a sample application of our results using a computer-assisted approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号