首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compression stiffness of a circular bearing that consists of laminated elastic layers interleaving with flexible reinforcements is derived in closed form. The effect of bulk compressibility in the elastic layer and the effect of boundary condition at the ends of the bearing are considered. The stiffness of the bearing with monotonic deformation is derived first. Then, the bearings with both ends being free from shear force and the bearings with both ends being bonded to rigid plates are studied. The theoretical solutions to the compression stiffness of the bearings are extremely close to the results obtained by the finite element method, which proves that the displacement assumptions utilized in the theoretical derivation are reasonable.  相似文献   

2.
In this paper, a new composite thin wall beam element of arbitrary cross-section with open or closed contour is developed. The formulation incorporates the effect of elastic coupling, restrained warping, transverse shear deformation associated with thin walled composite structures. A first order shear deformation theory is considered with the beam deformation expressed in terms of axial, spanwise and chordwise bending, corresponding shears and twist. The formulated locking free element uses higher order interpolating polynomial obtained by solving static part of the coupled governing differential equations. The formulated element has super convergent properties as it gives the exact elemental stiffness matrix. Static and free vibration analyses are performed for various beam configuration and compared with experimental and numerical results available in current literature. Good correlation is observed in all cases with extremely small system size. The formulated element is used to study the wave propagation behavior in box beams subjected to high frequency loading such as impact. Simultaneous existence of various propagating modes are graphically captured. Here the effect of transverse shear on wave propagation characteristics in axial and transverse directions are investigated for different ply layup sequences.  相似文献   

3.
The end shear restraint, which is an un-classical type of end support, has a significant effect on the behavior of elastic composite beams. The principal aim of this paper is to present a numerical model for studying the effect of end shear restraint on static and free vibration behavior of elastic composite beams with various end conditions. The elastic composite beam, considered in this study, is composed of an upper concrete slab and a lower steel beam, connected at the interface by shear transmitting studs. This type of beam is widely used in constructions especially for highway bridges. The three types of end conditions considered in this study are simple, fixed and free supports. The numerical model is based on the combination of transfer matrix and analog beam methods. The field transfer matrices for the element of the elastic composite beam are derived. The present model is applied to the beam systems with and without end shear restraint and the static response and natural frequencies are calculated. the effect of shear stiffness between the upper slab and lower beam is also demonstrated.  相似文献   

4.
A general theoretical approach based on theory of elasticity is presented in order to define the structural behaviour of riveted and spot welded joints. The new closed form solutions lead to the definition of a joint element useful to FE models of riveted or spot welded multi-spot structures. The objective is an accurate evaluation of the local elastic stiffness of spot joints in FE analysis, which is fundamental to perform a reliable simulation of multi-joint structures and, consequently, a good estimate of loads acting on spots; this makes it possible to introduce structural stress or new general criteria allowing, for example, to predict fatigue behaviour. On the other hand, a low entry of degrees of freedom is needed when several spot joints are present in a complex structure. The goal is to reach a reliable spot region model which can be used as the basis to develop a spot element in FE analysis. In the present paper, based on new closed form solutions, a spot element is introduced, so as to precisely evaluate both local and overall stiffness both of spot welded joints and riveted joints. Based on the stress function approach and the Kirchhoff plate theory in linear elastic hypotheses, closed-form in-plane stress, displacement, moment and transverse shear force solutions are derived for a new bidimensional model, subjected to various types of loads. The capability to simulate spot welds or rivets depends on the definition of two elastic parameters intrinsic in closed form solutions, that tunes the theoretical model according to actual joint behaviour.The proposed joint element combines the precision in the simulation with a very limited number degrees of freedom in the overall finite element model of an actual multi-spot structure.The results obtained using the introduced theoretical framework and spot element approach perfectly match those obtained using very refined FE models and experimental data.  相似文献   

5.
In this paper the non-linear analysis of a composite Timoshenko beam with arbitrary variable cross section undergoing moderate large deflections under general boundary conditions is presented employing the analog equation method (AEM), a BEM-based method. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of non-linear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples are worked out to illustrate the efficiency, the accuracy, the range of applications of the developed method and the influence of the shear deformation effect.  相似文献   

6.
To demonstrate the solutions of linear and geometrically non-linear analysis of laminated composite plates and shells, the co-rotational non-linear formulation of the shell element is presented. The combinations of an enhanced assumed strain (EAS) in the membrane strains and assumed natural strains (ANS) in the shear strains improve the behavior of 4-node shell element. To secure computational efficiency in the incremental non-linear analysis, the present element uses the form of the resultant forces pre-integrated through the thickness. The transverse shear stiffness of the laminates is defined by an equilibrium approach instead of the shear correction factor. Numerical examples of this study show very good agreement with the references.  相似文献   

7.
This paper presents a generic modelling for the time-dependent analysis of composite steel–concrete beams with partial shear interaction that occurs due to the deformation of the shear connection. The time effects considered in this modelling are those that arise from shrinkage and creep deformations of the concrete slab, and these effects are modelled using algebraic representations such as those of the age-adjusted effective modulus method (AEMM) and the mean stress method (MS), which are viscoelastic models for concrete deformation that can be stated algebraically. The generic model lends itself to closed form solutions for the analysis of composite beams subjected to a generic applied loading under a variety of end conditions. In this paper, the generic model is applied for the time-dependent analysis of composite beams that are simply supported and encastré, and to a propped cantilever, that are subjected to uniformly distributed loading and shrinkage deformations. Various representations of the structural behaviour of these beams are given in closed form which can also be used to benchmark available modelling techniques, i.e. finite element and finite difference formulations, which require a spatial discretisation to be specified as well as the time discretisation to perform a time analysis.  相似文献   

8.
In this paper a boundary element method is developed for the solution of the general transverse shear loading problem of composite beams of arbitrary constant cross-section. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson’s ratio and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross-section, while its axes are not necessarily the principal ones. The transverse shear loading is applied at the shear centre of the cross-section, avoiding in this way the induction of a twisting moment. Two boundary value problems that take into account the effect of Poisson’s ratio are formulated with respect to stress functions and solved employing a pure BEM approach, that is only boundary discretization is used. The evaluation of the transverse shear stresses is accomplished by direct differentiation of these stress functions, while both the coordinates of the shear center and the shear deformation coefficients are obtained from these functions using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The accuracy of the proposed shear deformation coefficients compared with those obtained from a 3-D FEM solution of the ‘exact’ elastic beam theory is remarkable.  相似文献   

9.
The imperfect interface conditions which are equivalent to the effect of a thin elastic interphase are derived by a Taylor expansion method in terms of interface displacement and traction jumps. Plane and cylindrical interfaces are analyzed as special cases. The effective elastic moduli of a unidirectional coated fiber composite are obtained on the basis of the derived imperfect interface conditions. High accuracy of the method is demonstrated by comparison of solutions of several problems in terms of the imperfect interface conditions or explicit presence of interphase as a third phase. The problems considered are transverse shear of a coated infinite fiber in infinite matrix and effective transverse bulk and shear moduli and effective axial shear modulus of a coated fiber composite. Unlike previous elastic imperfect interface conditions in the literature, the present ones are valid for the entire range of interphase stiffness, from very small to very large.  相似文献   

10.
In this paper the dynamic analysis of 3-D beam elements restrained at their edges by the most general linear torsional, transverse or longitudinal boundary conditions and subjected in arbitrarily distributed dynamic twisting, bending, transverse or longitudinal loading is presented. For the solution of the problem at hand, a boundary element method is developed for the construction of the 14 × 14 stiffness matrix and the corresponding nodal load vector of a member of an arbitrarily shaped simply or multiply connected cross section, taking into account both warping and shear deformation effects, which together with the respective mass and damping matrices lead to the formulation of the equation of motion. To account for shear deformations, the concept of shear deformation coefficients is used, defining these factors using a strain energy approach. Eight boundary value problems with respect to the variable along the bar angle of twist, to the primary warping function, to a fictitious function, to the beam transverse and longitudinal displacements and to two stress functions are formulated and solved employing a pure BEM approach that is only boundary discretization is used. Both free and forced transverse, longitudinal or torsional vibrations are considered, taking also into account effects of transverse, longitudinal, rotatory, torsional and warping inertia and damping resistance. Numerical examples are presented to illustrate the method and demonstrate its efficiency and accuracy. The influence of the warping effect especially in members of open form cross section is analyzed through examples demonstrating the importance of the inclusion of the warping degrees of freedom in the dynamic analysis of a space frame. Moreover, the discrepancy in the dynamic analysis of a member of a spatial structure arising from the ignorance of the shear deformation effect necessitates the inclusion of this additional effect, especially in thick walled cross section members.  相似文献   

11.
Certain classes of slender structures of complex cross-section or fabricated from specialised materials can exhibit a bi-linear bending moment-curvature relationship that has a strong influence on their global structural behaviour. This condition may be encountered, for instance, in (a) non-linear elastic or inelastic post-buckling problems if the cross-section stiffness may be well approximated by a bi-linear model; (b) multi-layered structures such as stranded cables, power transmission lines, umbilical cables and flexible pipes where the drop in the bending stiffness is associated with an internal friction mechanism. This paper presents a mathematical formulation and an analytical solution for such slender structures with a bi-linear bending moment versus curvature constitutive behaviour and subjected to axial terminal forces. A set of five first-order non-linear ordinary differential equations are derived from considering geometrical compatibility, equilibrium of forces and moments and constitutive equations, with hinged boundary conditions prescribed at both ends, resulting a complex two-point boundary value problem. The variables are non-dimensionalised and solutions are developed for monotonic and unloading conditions. The results are presented in non-dimensional graphs for a range of critical curvatures and reductions in bending stiffness, and it is shown how these parameters affect the structure's post-buckling behaviour.  相似文献   

12.
This paper considers the stability of nanowires on an elastic substrate. The problem is converted to a generalized Euler problem containing rotational spring restraint. When distributed loading and tip forces are simultaneously applied, the buckling problem of a heavy nanocolumn with rotational spring junction is reduced to an integral equation. An approximate buckling load equation is derived explicitly. The critical length of nanocantilevers is given in closed form. Results indicate that spring stiffness increases the critical length of nanowires. The effect of self-weight on the critical length is pronounced for small tip forces, and becomes weaker for larger tip forces.  相似文献   

13.
The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures.  相似文献   

14.
This paper presents several issues that characterize the buckling behaviour of elliptical cylindrical shells and tubes under compression. First, a formulation of Generalised Beam Theory (GBT) developed to analyse the elastic buckling behaviour of non-circular hollow section (NCHS) members is presented. Since the radius varies along the cross-section mid-line, the main concepts involved in the determination of the deformation modes are adapted to account for the specific aspects related to elliptical cross-section geometry. After that, two independent sets of fully orthogonal deformation modes are determined: (i) local-shell modes satisfying the null membrane shear strain but exhibiting transverse extension and (ii) shell-type modes satisfying both assumptions of null membrane shear strain and null transverse extension. In order to illustrate the application, capabilities and versatility of the formulation, the local and global buckling behaviour of elliptical hollow section (EHS) members subjected to compression is analysed. In particular, in-depth studies concerning the influence of member length on the variation of the critical load and corresponding buckling mode shape are presented. Moreover, the GBT results are compared with estimates obtained by means of shell finite element analyses and are thoroughly discussed. The results show that short to intermediate length cylinders buckle mostly in local-shell modes, exhibiting only transverse extension, while intermediate length to long cylinders buckle mostly in shell-type modes (distortional and global modes), which are characterized by transverse bending and primary warping displacements. It is also shown that the present formulation is very efficient from the computational point of view since only three deformation modes (one local-shell, one distortional and one global) are required to evaluate the buckling behaviour of EHS cylinders for a wide range of lengths.  相似文献   

15.
A biaxial hysteretic model is developed to take into account the commonly observed hysteretic characteristics of strength and stiffness degradation, pinching and biaxial interaction. The concept of zero force point is proposed to develop the biaxial hysteretic model. Two non-linear inelastic springs and one linear elastic spring are connected in parallel to define the cyclic behavior of the proposed biaxial hysteretic model. The proposed biaxial hysteretic model is rate-independent and capable of simulating not only global (such as story shear force versus story drift response of the whole structure) but also the local hysteretic behavior of structural member (such as moment versus curvature or plastic rotation response of a structural element). The biaxial cyclic loading test data of six reinforced concrete columns, which are designed for flexural failure and shear failure, are used to validate the proposed biaxial hysteretic model.  相似文献   

16.
Plastic deformation of granular materials is investigated from the micromechanical viewpoint, in which the assembly of particles and interparticle contacts is considered as a mechanical structure. This is done in three ways. Firstly, by investigating the degree of redundancy of the system by comparing the number of force degrees of freedom at contacts with the number of governing equilibrium equations; Secondly, by determining the spectrum of eigenvalues of the stiffness matrix for the structure that is represented by the particles and their contacts; Thirdly, by investigating the evolution with imposed strain of the continuum elastic stiffness tensor of the system. It is found that, with increasing imposed strain, the degree of redundancy rapidly evolves towards a state with small redundancy, i.e. the system becomes nearly statically determinate. The spectrum of the system shows many singular and near-singular modes at peak shear strength and at large strain. The continuum elastic stiffness tensor becomes strongly anisotropic with increasing imposed strain and shows strong non-affinity of deformation. The assumption of a constant and isotropic elastic stiffness tensor in elasto-plastic continuum constitutive relations for granular materials is generally incorrect. Overall, the plastic continuum behaviour of granular materials originates from the plastic frictional behaviour at contacts and from damage in the form of changes in the contact network.  相似文献   

17.
Summary The objective of this paper is to evaluate the averaged elastic properties of 3-D grained composites in which identical inclusions form a prismatic network interacting with the matrix material. The inclusions are of ellipsoidal shape with transverse circular sections located at the nodes of a doubly-periodic lattice with an orthogonal elementary cell. When the arrays of inclusions are set at equal spacings in normal directions through the thickness of the matrix, the material formed is an anisotropic composite with tetragonal symmetry at planes transverse to the fiber axis. The longitudinal and transverse elastic and shear moduli as well as the longitudinal Poisson's ratios of such composites are evaluated in this paper. The averaged properties are studied in terms of the aspect ratio and volume fraction of the inclusions as well as the relative rigidity of the constituent phases. Employing the Eshelby's theory for the stress field around a single ellipsoidal inhomogeneity, which is surrounded by the effective anisotropic material, and considering the Mori-Tanaka's concept for the mutual interaction of the neighboring inclusions, we may evaluate the averaged elastic properties of grained composites with aligned ellipsoidal inclusions at finite concentrations. The results provided in a closed-form solution concern the stiffness of 3-D grained composites with parallely dispersed ellipsoidal inclusions forming a prismatic network inside the principal material. It is shown that the stiffness is affected by both the geometry of the inclusions and their concentration. The use of different composite models in the analysis shows that intense variations of stiffness occur mainly in hard composites weakened by soft ellipsoidal inclusions. These findings come in full verification with experimental or theoretical results from the literature. Received 10 February 1998; accepted for publication 27 November 1998  相似文献   

18.
Recent theoretical and experimental results have shown the possibility of enormous increases in composite material overall elastic stiffness, damping, thermal expansion, piezoelectricity, etc., when the composite contains a tuned non-positive-definite (i.e., negative stiffness) constituent. For such composite materials to have practical utility, they must be stable. Recent research has shown they can be, for a limited range of constituent negative stiffness. This research has treated linear elastic composite materials with homogeneous phases, via the energy method and full dynamic stability analyses.In the present work, we first show how to analyze the composites previously treated by the comprehensive but simpler static stability approach, obtaining closed-form results. We then employ this approach to show that permitting heterogeneity of the positive-definite phase can substantially increase the range of constituent negative stiffness while maintaining overall composite stability. We first treat the positive-definite phase heterogeneity as piecewise homogeneous, and then treat it as continuously-varying. In the continuously-varying heterogeneity case, we seek the radially optimal distribution of the elastic moduli in the coatings, under constant coating average moduli constraint, to permit the most negative possible inclusion stiffness while maintaining overall composite stability. This is accomplished for three coating cases: constant bulk modulus but arbitrarily radially-varying shear modulus; constant shear modulus but arbitrarily radially-varying bulk modulus; and both moduli arbitrarily radially varying. We find the optimal coatings to be: a heterogeneous one with shear modulus being a specific continuously decreasing function of radius for the first case; a homogeneous one for the second case; and a heterogeneous one with both moduli being either Dirac-delta or Heaviside-step decreasing functions of radius for the last case (if the coating moduli are unrestricted in magnitude or have upper limits, respectively). The results show a substantial increase in the permissible inclusion negative stiffness range is provided by coating heterogeneity, while maintaining overall composite stability. Such an increased range of constituent negative stiffness provides an enlarged tuning parameter range for the development of novel, high-performance composite materials.  相似文献   

19.
A beam theory for the stability analysis of short beam that includes shear deformation and warping of the cross-section is developed. The warping of the cross-section is taken to be an independent kinematics quantity and corresponding force resultants are defined. For the beam subjected to the external loading only at the ends of the beam, equilibrium equations have been obtained by the principle of virtual work. The variations of lateral displacement, rotational angle of the cross-section and the multiplier of the warping shape along the beam axis are solved in closed form and expressed in terms of deformation quantities at the ends of the beam. Based on this beam theory, the lateral stiffness of the beam sustained an axial compression force and a lateral shear force at one end is explicitly derived, from which the equation of the buckling load is established and the buckling load can be solved. When the effect of cross-section warping is neglected, the derived lateral stiffness and buckling load converge to the solutions of the Haringx theory.  相似文献   

20.
ABSTRACT

Equations with the general form ayiv(x) ± by11(x) + cy(x) = p(x), 0 ≤ x ≥ Larise frequently in structural mechanics. Typical instances are: (a) beam on elastic foundation problems with or without axial force, (b) warping torsion of prismatic members with or without continuous elastic restraint, (c) cylinders with axi-symmetric loading. In this paper an exact closed form finite element solution is derived, with particular reference to beams on elastic foundations, with tensile or compressive axial loads. The solutions obtained are, however, of more general application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号