首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental and theoretical parametric study is undertaken to investigate the effect of transmural pressure on the non-linear dynamics and stability of circular cylindrical shells with clamped ends subjected to internal fluid flow. The theoretical structural model is based on the Donnell non-linear shallow shell theory, and potential flow theory is employed to describe the fluid-structure interaction. It is found that, for low transmural pressures in the range investigated, the shell loses stability by static subcritical divergence, while for higher transmural pressures the loss of stability is supercritical. In addition, there are ranges of flow velocity in which the shell exhibits quasi-periodic or even chaotic behaviour.  相似文献   

2.
The stability of an elastic circular cylindrical shell of revolution interacting with a compressible liquid (gas) flow having both axial and tangential components is analyzed. The behavior of the fluid is studied within the framework of potential theory. The elastic shell is described in terms of the classical theory of shells. Numerical solution of the problem is performed using a semianalytical finite element method. Results of numerical experiments for shells with different boundary conditions and geometric dimensions are presented. The effects of fluid rotation on the critical flow velocity and the effect of axial fluid flow on the critical angular velocity of fluid rotation were estimated.  相似文献   

3.
This paper considers a solution of the problem of coupled hydroelasticity for a helicoidal shell in a rigid tube with a flowing ideal incompressible fluid, which is of interest for the design of heat exchange systems. The flow is considered potential, and boundary conditions are imposed on the deformed surface. The version of the classical theory of elastic shells as the Lagrangian mechanics of deformable surfaces is used. The longitudinal-torsional vibrations of a long shell and a naturally twisted rod are studied. It is established that the obtained hydrodynamic loads are conservative, so that a divergence type instability is possible. A critical combination of parameters is determined.  相似文献   

4.
Mohamadi  Arash  Shahgholi  Majid  Ashenai Ghasemi  Faramarz 《Meccanica》2019,54(14):2227-2246

This paper investigates the linear free vibration of axially moving simply supported thin circular cylindrical shells with constant and time-dependent velocity considering the effect of viscous structure damping. Classical shell theory is employed to express strain-displacement relation. Linear elasticity theory is used to write stress–strain relation considering Hook’s Law. Governing equations in cylindrical coordinates are derived using the Hamilton principle. Equilibrium equations are rewritten with the help of Donnell–Mushtari shell theory simplification assumptions. Motion equations for displacements in axial and circumferential directions are solved analytically concerning to displacement in the radial direction. As the displacement in the radial direction is the combination of driven and companion modes, the third motion equation is discretized using the Galerkin method. The set of ordinary differential equation obtained from the Galerkin method is solved using the steady-state method, which in practice leads to the prediction of the exact frequencies of vibration. By employing multiple scale method the critical speed values of a circular cylindrical shell and several types of instabilities are discussed. The numerical results show that by increasing the mean velocity, the system always loses stability by the divergence instability in different modes, and the critical speed values of lower modes are higher than those of higher modes. As well as the unstable regions for the resonances between velocity function fluctuation frequencies and the linear combination of natural frequencies is gained from the solvability condition of second order multiple scale method. The accuracy of the method is checked against the available data.

  相似文献   

5.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

6.
7.
A new, improved linear analytical model is presented in this paper for the dynamics of a slender cantilevered cylinder with an ogival free end, subjected to axial flow directed from its free end towards the clamped one. In the present model the fluid-dynamic forces at the free end of the cylinder are analysed in a meticulous manner. The model predicts that the cylinder loses stability at relatively low flow velocity by flutter, and then at higher flow velocity by static divergence. This agrees with the dynamical behaviour observed in experiments. Moreover, quantitative agreement in the critical flow velocities for flutter and divergence between this improved theory and experiment is fairly good.  相似文献   

8.
Syntactic foams are particulate composites that are obtained by dispersing thin hollow inclusions in a matrix material. The wide spectrum of applications of these composites in naval and aerospace structures has fostered a multitude of theoretical, numerical, and experimental studies on the mechanical behavior of syntactic foams and their constituents. In this work, we study static and dynamic axisymmetric buckling of single hollow spherical particles modeled as non-linear thin shells. Specifically, we compare theoretical predictions obtained by using Donnell, Sanders–Koiter, and Teng–Hong non-linear shell theories. The equations of motion of the particle are obtained from Hamilton׳s principle, and the Galerkin method is used to formulate a tractable non-linear system of coupled ordinary differential equations. An iterative solution procedure based on the modified Newton–Raphson method is developed to estimate the critical static load of the microballoon, and alternative methodologies of reduced complexity are further discussed. For dynamic buckling analysis, a Newmark-type integration scheme is integrated with the modified Newton–Raphson method to evaluate the transient response of the shell. Results are specialized to glass particles, and a parametric study is conducted to investigate the effect of microballoon wall thickness on the predictions of the selected non-linear shell theories. Comparison with finite element predictions demonstrates that Sanders–Koiter theory provides accurate estimates of the static critical load for a wide set of particle wall thicknesses. On the other hand, Donnell and Teng–Hong theories should be considered valid only for very thin particles, with the latter theory generally providing better agreement with finite element findings due to its more complete kinematics. In this context, we also demonstrate that a full non-linear analysis is required when considering thicker shells, while simplified treatment can be utilized for thin particles. For dynamic buckling, we confirm the accuracy of Sanders–Koiter theory for all the considered particle thicknesses and of Teng–Hong and Donnell theories for very thin particles.  相似文献   

9.
Vibrations and stability of a thin rectangular plate, infinitely long and wide, periodically supported in both directions (so that it is composed by an infinite number of supported rectangular plates with slope continuity at the edges) and immersed in axial liquid flow on its upper side is studied theoretically. The flow is bounded by a rigid wall and the model is based on potential flow theory. The Galerkin method is applied to determine the expression of the flow perturbation potential. Then the Rayleigh–Ritz method is used to discretize the system. The stability of the coupled system is analyzed by solving the eigenvalue problem as a function of the flow velocity; divergence instability is detected. The convergence analysis is presented to determine the accuracy of the computed eigenfrequencies and stability limits. Finally, the effects of the plate aspect ratio and of the channel height ratio on the critical velocity giving divergence instability and vibration frequencies are investigated.  相似文献   

10.
The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with the differential quadrature method(DQM). Subsequently, the effects of the mean flow velocity and two key parameters of the corrugated pipe, i.e., the amplitude of the corrugations and the total number of the corrugations, are studied. The results show that the corrugated pipe will lose stability by flutter even if it has been supported at both ends. When the total number of the corrugations is sufficient, this flutter instability occurs at a micro flow velocity. These phenomena are verified via the Runge-Kutta method. The critical flow velocity of divergence is analyzed in detail. Compared with uniform pipes, the critical velocity will be reduced due to the corrugations, thus accelerating the divergence instability. Specifically,the critical flow velocity decreases if the amplitude of the corrugations increases. However, the critical flow velocity cannot be monotonously reduced with the increase in the total number of the corrugations. An extreme point appears, which can be used to realize the parameter optimization of corrugated pipes in practical applications.  相似文献   

11.
Based on a non-linear strain–displacement relationship of a non-rotating twisted and open conical shell on thin shell theory, a numerical method for free vibration of a rotating twisted and open conical shell is presented by the energy method, where the effect of rotation is considered as initial deformation and initial stress resultants which are obtained by the principle of virtual work for steady deformation due to rotation, then an energy equilibrium of equation for vibration of a twisted and open conical shell with the initial conditions is also given by the principle of virtual work. In the two numerical processes, the Rayleigh–Ritz procedure is used and the two in-plane and a transverse displacement functions are assumed to be algebraic polynomials in two elements. The effects of characteristic parameters with respect to rotation and geometry such as an angular velocity and a radius of rotating disc, a setting angle, a twist angle, curvature and a tapered ratio of cross-section on vibration performance of rotating twisted and open conical shells are studied by the present method.  相似文献   

12.
Small scale effect on flow-induced instability of double-walled carbon nanotubes (DWCNTs) is investigated using an elastic shell model based on Donnell’s shell theory. The dynamic governing equations of DWCNTs are formulated on the basis of nonlocal elasticity theory, in addition, the van der Waals (vdW) interaction between the inner and outer walls is taken into account in the nonlocal shell modeling. The instability of DWCNTs that is induced by a pressure-driven steady flow is investigated. The numerical computations indicate that as the flow velocity increases, DWCNTs have a destabilizing way to get through multi-bifurcations of the first and second bifurcations in turn. It is concluded that the natural frequency of DWCNTs and the critical flow velocity of the flow-induced instability are strictly related to the ratio of the length to the outer radius of DWCNTs, the pressure of the fluid and the small scale effects. Furthermore, it is interesting to observe that as the small scale effects are considered, the natural frequencies and the critical flow velocities of DWCNTs decrease as compared to the results with the classical (local) continuum mechanics, therefore, the small scale effects play an important role on performing the instability analysis in the fluid-conveying DWCNTs.  相似文献   

13.
The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the first-order shear deformation theory (FSDT) of shells. The governing equations of motion and the corresponding boundary conditions are established through the variational method and the Maxwell equation. The closed-form solutions of the rotating sandwich cylindrical shell are obtained. The effects of geometrical parameters, volume fractions of carbon nanotubes, applied voltages on the inner and outer piezoelectric layers, and magnetic and thermal fields on the natural frequency, critical angular velocity, and deflection of the sandwich cylindrical shell are investigated. The critical angular velocity of the nanocomposite sandwich cylindrical shell is obtained. The results show that the mechanical properties, e.g., Young’s modulus and thermal expansion coefficient, for the carbon nanotube and matrix are functions of temperature, and the magnitude of the critical angular velocity can be adjusted by changing the applied voltage.  相似文献   

14.
15.
Stability of an isolated membrane lying in a uniform two-dimensional low subsonic flow is studied theoretically and experimentally. The problem is formulated in a form of a boundary integral equation and differential equations. The boundary integral equation is solved by the boundary element method and the finite difference method is used to solve the differential equations. An effect of a membrane wake is used in the analysis. The theoretical critical divergence velocity is compared with the experimental value.  相似文献   

16.
We discuss the non-linear theory of thin shells expressed in terms of displacements of the shell reference surface as the only independent field variables. The formulation is based on the principle of virtual work postulated for the reference surface. In our approach: (1) the vector equilibrium equations are represented through components in the deformed contravariant surface base, and using the compatibility conditions the resulting tangential equilibrium equations are additionally simplified, (2) at the shell boundary the new scalar function of displacement derivatives is defined and new sets of four work-conjugate static and geometric boundary conditions are derived, as well as (3) for prescribed shell geometry all non-linear shell relations are generated automatically by two packages set up in Mathematica. The displacement boundary value problem and the associated homogeneous shell buckling problem are generated exactly without using any additional approximations following from errors of the constitutive equations. Both problems are extremely complex and available only in the computer memory. Such an approach allows us to account also for those a few supposedly small terms which may be critical for finding the correct buckling load of shells sensitive to imperfections. This approach is used in the accompanying paper by Opoka and Pietraszkiewicz [Opoka, S., Pietraszkiewicz, W., 2009. On refined analysis of bifurcation buckling for the axially compressed circular cylinder. International Journal of Solids and Structures, 46, 3111–3123.] to perform the refined numerical analysis of bifurcation buckling for the axially compressed circular cylinder.  相似文献   

17.
圆柱壳在侧向非对称冲击载荷下的塑性动力屈曲   总被引:2,自引:1,他引:2  
采用塑性动力屈曲能量准则,对圆柱壳非均匀局部径向冲击下的塑性动力屈曲进行了研究。文中分别采用弹性的角弹簧和位移弹簧模拟非屈曲部分对屈曲部分的影响,推导了有关模态和临界速度的冲击公式,并与有关的实验结果进行了比较,分析了两种边界对塑性动力屈曲的影响。  相似文献   

18.
The non-linear free and forced vibrations of simply supported thin circular cylindrical shells are investigated using Lagrange's equations and an improved transverse displacement expansion. The purpose of this approach was to provide engineers and designers with an easy method for determining the shell non-linear mode shapes, with their corresponding amplitude dependent non-linear frequencies. The Donnell non-linear shell theory has been used and the flexural deformations at large vibration amplitudes have been taken into account. The transverse displacement expansion has been made using two terms including both the driven and the axisymmetric modes, and satisfying the simply supported boundary conditions. The non-linear dynamic variational problem obtained by applying Lagrange's equations was then transformed into a static case by adopting the harmonic balance method. Minimisation of the energy functional with respect to the basic function contribution coefficients has led to a simple non-linear multi-modal equation, the solution of which gives in the case of a single mode assumption an expression for the non-linear frequencies which is much simpler than that derived from the non-linear partial differential equation obtained previously by several authors. Quantitative results based on the present approach have been computed and compared with experimental data. The good agreement found was very satisfactory, in comparison with previous old and recent theoretical approaches, based on sophisticated numerical methods, such as the finite element method (FEM), the method of normal forms (MNF), and analytical methods, such as the perturbation method.  相似文献   

19.
Critical velocity of an infinite long sandwich shell under moving internal pressure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich shell is studied using the sandwich shell theory by considering compressibility and transverse shear deformation of the core, and transverse shear deformation of face sheets. Based on the elastodynamics theory, displacement components expanded by Legendre polynomials, and position-dependent elastic constants and densities are introduced into the equations of motion. Critical velocity is the minimum phase velocity on the desperation relation curve obtained by using the two methods. Numerical examples and the finite element (FE) simulations are presented. The results show that the two critical velocities agree well with each other, and two desperation relation curves agree well with each other when the wave number k is relatively small. However, two limit phase velocities approach to the shear wave velocities of the face sheet and the core respectively when k limits to infinite. The two methods are efficient in the investigation of wave propagation in a sandwich cylindrical shell when k is relatively small. The critical velocity predicted in the FE simulations agrees with theoretical prediction.  相似文献   

20.
In this paper, a new theoretical model is developed, based on the modified couple stress theory, for the vibration analysis of fluid-conveying microtubes by introducing one internal material length scale parameter. Using Hamilton's principle, the equations of motion of fluid-conveying microtubes are derived. After discretization via the Differential Quadrature Method (DQM), the analytical model exhibits some essential vibration characteristics. For a microtube in which both ends are supported, it is found that the natural frequencies decrease with increasing internal flow velocities. It is also shown that the microtube will become unstable by divergence at a critical flow velocity. More significantly, when the outside diameter of the microtube is comparable to the material length scale parameter, the natural frequencies obtained using the modified couple stress theory are much larger than those obtained using the classical beam theory. It is not surprising, therefore, that the critical flow velocities predicted by the modified couple stress theory are generally higher than those predicted by the classical beam theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号