首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl arabinofuranoside 1 was fully acetylated to methyl 2,3,5-tri-O-acetyl-d-arabinofuranoside 2 and it was regioselectively deacetylated using enzymes. Rhizopus oryzae esterase gave methyl 3,5-di-O-acetyl-d-arabinofuranoside 3, regioselectively. This protected 3 was deoxygenized to 3,5-di-O-acetyl-d-2-deoxyarabinofuranoside 7 using hypophosphorous acid.  相似文献   

2.
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 9a in quantitative yield. Bromination of amide 9a by the system SOBr2 in DMF or PPh3/CBr4 in pyridine led, after acetylation, to epoxide 7. However, treatment of amide 9a with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxyl-N-ethyl-d-ribonamide 10a. Methanolysis of 10a, with sodium methoxide, afforded the N-ethyl-d-ribonolactam 11a in 51% overall yields. Using this method, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonolactams 11b-e were obtained in good yields (48-53%).  相似文献   

3.
The Baylis-Hillman reaction of 3-O-benzyl-α-d-xylo-pentodialdo-1,4-furanose 2 afforded a diastereomeric mixture of l-ido- and d-gluco-configurated α-methylene-β-hydroxy esters 3a and 3b, respectively, in 1:1 ratio. Conjugate addition of benzyl amine on 3a gave adduct 4a as a major product while, addition of benzyl amine to 3b gave only one diastereomer 4b. Reduction of ester functionality in 4a/4b, opening of 1,2-acetonide functionality followed by reductive amino-cyclization under hydrogenation condition afforded azocanes 1c/1d in good yield.  相似文献   

4.
Intramolecular N-alkylation of 2,3-O-isopropylidene-5-O-methanesulfonyl-6-O-t-butyldimethylsilyl-d-mannofuranose-oxime 7 afforded a five-membered cyclic nitrone 9, which on N-O bond reductive cleavage followed by deprotection of -OTBS and acetonide functionalities gave 1,4-dideoxy-1,4-imino-l-allitol (DIA) 3. Addition of allylmagnesium chloride to nitrone 9 afforded α-allylated product 10a in high diastereoselectivity providing an easy entry to N-hydroxy-C1-α-allyl-substituted pyrrolidine iminosugar 4a after removal of protecting group, while N-O bond reductive cleavage in 10a afforded C1-α-allyl-pyrrolidine iminosugar 4b.  相似文献   

5.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl-β-d-fructopyranose (5) was straightforwardly transformed into its d-psico epimer (8), after O-debenzoylation followed by oxidation and reduction, which caused the inversion of the configuration at C(3). Compound 8 was treated with lithium azide yielding 5-azido-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-α-l-tagatopyranose (9) that was transformed into the related 3,4-di-O-benzyl derivative 10. Cleavage of the acetonide in 10 to give 11, followed by regioselective 1-O-pivaloylation to 12 and subsequent catalytic hydrogenation gave (2R,3S,4R,5S)-3,4-dibenzyloxy-2,5-bis(hydroxymethyl)-2′-O-pivaloylpyrrolidine (13). Stereochemistry of 13 could be determined after O-deacylation to the symmetric pyrrolidine 14. Total deprotection of 14 gave 2,5-imino-2,5-dideoxy-d-galactitol (15, DGADP).  相似文献   

6.
The readily available 3-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (2) was transformed into its 5-O- (3) and 4-O-benzoyl (4) derivative. Compound 4 was straightforwardly transformed into 5-azido-4-O-benzoyl-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (7) via the corresponding 5-deoxy-5-iodo-α-l-sorbopyranose derivative 6. Cleavage of the acetonide in 7 to give 8, followed by regioselective 1-O-silylation to 9 and subsequent catalytic hydrogenation gave a mixture of (2S,3R,4R,5R)- (10) and (2R,3R,4R,5R)-4-benzoyloxy-3-benzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (12) that was resolved after chemoselective N-protection as their Cbz derivatives 11 and 1a, respectively. Stereochemistry of 11 and 1a could be determined after total deprotection of 11 to the well known DGDP (13). Compound 2 was similarly transformed into the tri-orthogonally protected DGDP derivative 18.  相似文献   

7.
The 4-deoxy-4-C-sulfonic acid and 6-deoxy-6-C-sulfonic acid derivatives of methyl α-d-gluco- and α-d-galactopyranosides were prepared by triflate-mediated nucleophilic displacement reactions, either with NaHSO3 or with AcSK. The triflate esters of methyl 2,3,4-tri-O-benzyl- 1, methyl 2,3,6-tri-O-benzyl-α-d-glucopyranoside 9 and methyl 2,3,6-tri-O-benzyl-α-d-galactopyranoside 5 provided methyl 6-deoxy-6-C-sulfo-α-d-glucopyranoside 4, methyl 4-deoxy-4-C-sulfo-α-d-galactopyranoside 12 and α-d-glucopyranoside 8, respectively. The triflate derivative of methyl 2,3,4-tri-O-benzyl-α-d-galactopyranoside 13 gave methyl 3,6-anhydro-2,4-di-O-benzyl-α-d-galactopyranoside 14. Formation of the 3,6-anhydro derivative was prevented by using 3,4-O-isopropylidene acetal protection to obtain methyl 6-deoxy-6-C-sulfo-α-d-galactopyranoside 19. The aim of the research is to replace the sulfate esters by sulfonic acids in the repeating oligosaccharide units of glycosaminoglycans or in different oligosaccharide ligands.  相似文献   

8.
Completely protected 4-deoxy-α-L-threo-hex-4-enopyranosides 1c,d undergo the dichlorocarbene addition affording exclusively diastereomeric adducts 5c,d with the cyclopropane ring anti to the C-3 alkyloxy substituent, while the reaction with 3-unprotected derivatives 1a,b affords a mixture of syn and anti derivatives. Under the Simmons-Smith cyclopropanation adducts 2a-d with a syn stereochemistry are obtained. Starting from 5b, the cyclopropanated sugar 3b is obtained by reduction with LiAlH4, thus the two diastereomers 2b and 3b can be stereoselectively obtained through the two different pathways. For a useful comparison, 4-deoxy-β-L-threo-hex-4-enopyranoside 1e was also subjected to the above two cyclopropanation methods affording the expected cycloadduct 2e and a diastereomeric mixture of dichlorocycloadducts 4e and 5e (4e/5e=2.8:1).  相似文献   

9.
[4+2] Cycloaddition reactions of 4-(phenylthio)-1-tosyl-2-pyridone (6a) and 4-(phenylsulfonyl)-1-tosyl-2-pyridone (6b) with electron-deficient dienophiles 7 (N-methylmaleimide, N-phenylmaleimide, and methyl acrylate) gave new isoquinuclidine products 8-10. The N-tosyl group of 6a and 6b was also efficiently converted to N-alkyl derivatives 6c-f, which showed different stereoselectivity toward reactions with dienophiles 7. Several other dienophiles 15 (dimethyl acetylenedicarboxylate, methyl vinyl ketone, ethyl vinyl ether, and methyl methacrylate) were found not to react with 6a or 6b, but led to the formation of tosyl migration products 4-(phenylthio)-O-tosyl-pyridinol (16a) and 4-(phenylsulfonyl)-O-tosyl-2-pyridinol (16b), respectively. The reactivity, regioselectivity, and stereoselectivity of the cycloaddition reactions were also compared with semi-empirical calculations.  相似文献   

10.
The d-gluco-, l-ido-, d-galacto-, and l-altro-configured glycaro-1,5-lactams 1-4 were prepared from the known tartaric anhydride 5 via the aldehyde 6. These lactams are known (1) or potential (2-4) inhibitors of β-d-glucuronidases and α-l-iduronidases. Olefination of 6 to the (E)- and (Z)-alkenes 7 or 8, followed by reagent or substrate controlled dihydroxylation, lactonization, azidation, reduction, and deprotection led in 10 steps and in overall yields of 11-20% to the title lactams.  相似文献   

11.
Diastereoselective synthesis of 1-epi-castanospermine (2) from l-sorbose is described. The successful approach involved the use of 8-azido-2,8-dideoxy-α-l-gulo-oct-4-ulo-4,7-furanosononitrile intermediate (17). This compound was easily made in five steps from 3-O-benzoyl-2-deoxy-4,5:6,8-di-O-isopropylidene-α-l-gulo-oct-4-ulo-4,7-furanosononitrile (7) previously synthesized from l-sorbose. Catalytic hydrogenation of the azido intermediate 17 with Pd-C afforded with total stereocontrol one of the two possible piperidine diastereomers. Acid-catalyzed internal reductive deamination of the nitrile derivative completed the total synthesis of (1R,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyindolizidine [(+)-1-epi-castanospermine, 2].  相似文献   

12.
Vinod D. Chaudhari 《Tetrahedron》2006,62(18):4349-4354
The d-glucose derived α,β-unsaturated ester 5 on 1,2-acetonide deprotection, oxidative diol cleavage followed by treatment with N-benzylamine in the presence of NaBH3CN undergoes reductive amination and a concomitant intramolecular conjugate addition reaction leading to the formation of dihydroxypyrrolidine-ester 6a and monohydroxypyrrolidine-γ-lactone 6b. Intermediates 6a and 6b were efficiently converted to (−)-lentiginosine 3a, its 8a-epimer 3b, and pyrrolizidine azasugar 4 in good overall yield.  相似文献   

13.
1,3-Di-O-acetyl-4-O-benzyl-2,6-dideoxy-d-arabinopyranose (11) was synthesised from thiophenyl α-d-mannopyranoside (21) in an eight-step sequence. Tosylation of 21 and subsequent reaction with 2,2-dimethoxypropane gave tosylate 22, which upon treatment with lithium aluminium hydride furnished 6-deoxy glycoside 24 and by-product thiophenyl 6-deoxy-2-O-isopropyl-α-d-arabinopyranoside. The X-ray crystal structure of the latter was determined. Benzylation of the 4-hydroxyl group of 24 and subsequent protecting group manipulation gave d-rhamnosyl bromide 29, which on treatment with zinc-copper couple gave the orthogonally protected d-rhamnal 30. Triphenylphosphine hydrogen bromide catalysed addition of acetic acid to 30 furnished the target molecule 11. The scandium(III) triflate promoted reaction of 11 and 2-naphthol gave the corresponding C-glycoside 36 in 86% yield.  相似文献   

14.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (6) was straightforwardly transformed into 5-azido-3-O-benzoyl-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (8), after treatment under modified Garegg's conditions followed by reaction of the resulting 3-O-benzoyl-4-O-benzyl-5-deoxy-5-iodo-1,2-O-isopropylidene-α-l-sorbopyranose (7) with lithium azide in DMF. O-debenzoylation at C(3) in 8, followed by oxidation and reduction caused the inversion of the configuration to afford the corresponding β-d-psicopyranose derivative 11 that was transformed into the related 3,4-di-O-benzyl derivative 12. Cleavage of the acetonide of 12 to give 13 followed by O-tert-butyldiphenylsilylation afforded a resolvable mixture of 14 and 15. Compound 14 was transformed into (2R,3R,4S,5R)- (17) and (2R,3R,4S,5S)-3,4-dibenzyloxy-2′,5′-di-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (18) either by a tandem Staudinger/intramolecular aza-Wittig process and reduction of the resulting intermediate Δ2-pyrroline (16), or only into 18 by a high stereoselective catalytic hydrogenation. When 15 was subjected to the same protocol, (2S,3S,4R,5R)- (21) and (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (22) were obtained, respectively.  相似文献   

15.
Mixtures of ethyl (E)- and (Z)-4-alkoxy-2-fluoro-3,4-diphenylbut-2-enoates (6-8) prepared from benzoin ethers and ethyl 2-(diethoxyphosphoryl)-2-fluoroacetate were transformed in high yields to the target 3-fluoro-4,5-diphenylfuran-2(5H)-one (14) using bromine in tetrachloromethane at room temperature. The non-cyclisable Z-isomers 6b-8b were gradually isomerised to the cyclisable E-isomers 6a-8a during the process. The reaction of the (E)-butenoates 6a-8a with boron trifluoride led to furanone 14, while in Z-isomers 6b-8b both alkoxy group and vinylic fluorine were substituted with bromine during the reaction. Mechanisms for both complex reactions have been proposed. Furanone 14 was transformed to 2-[tert-butyl(dimethyl)silyloxy]-3-fluoro-4,5-diphenylfuran (18) as a novel building block.  相似文献   

16.
4,8-Anhydro-d-glycero-d-ido-nonanitol 1,6,7-trisphosphate (9), designed as a novel IP3 receptor ligand having an α-C-glycosidic structure, was synthesized via a radical cyclization reaction with a temporary connecting allylsilyl group as the key-step. Phenyl 2-O-allyldimethylsilyl-3,4-bis-O-TBS-1-seleno-β-d-glucopyranoside (10a), conformationally restricted in the unusual 1C4-conformation, was treated with Bu3SnH/AIBN to form the desired α-cyclization product 16a almost quantitatively. On the other hand, when a conformationally unrestricted O-benzyl-protected 2-O-allyldimethylsilyl -1-selenoglucoside 15 was used as the substrate, the radical reaction was not stereoselective and gave a mixture of the α-and β-products. From 16a, the target C-glucoside trisphosphate 9 was synthesized via phosphorylation of the hydroxyls by the phosphoramidite method. During the synthetic study, an efficient procedure for the oxidative C-Si bond cleavage, via a nucleophilic substitution at the silicon with p-MeOPhLi followed by Fleming oxidation, was developed. The C-glycoside 9 was found to be a full agonist for Ca2+ mobilization, although its activity was weaker than that of the natural ligand IP3. Thus, the α-C-glucosidic structure was shown to be a useful mimic of the myo-inositol backbone of IP3.  相似文献   

17.
3,4-cis-4-Acetoxy-3-O-acetyl-4-dehydro-5,7,3′,4′-tetra-O-benzyl-(+)-catechin (1a) or (−)-epicatechin (1b) reacted high regio- and stereo-selectively with 1.5 equiv of the 5,7,3′,4′-tetra-O-benzyloxyflavan-3-ol (4a or 4b) in the presence of 1 equiv of TMSOTf to give the corresponding procyanidins. On the other hand, the self-condensation of 1a in the presence of a catalytic amount of B(C6F5)3 afforded wide-range procyanidins from dimer to 15-mer like a biomass.  相似文献   

18.
Valeria Di Bussolo 《Tetrahedron》2007,63(11):2482-2489
The glycosylation of alcohols, phenol, and partially protected monosaccharides with the diastereoisomeric d-allal and d-galactal-derived N-nosyl aziridines and leads to the corresponding 4-N-(nosylamino)-2,3-unsaturated-α-O- () and β-O-glycosides and disaccharides (), respectively, in a stereospecific substrate-dependent O-glycosylation process. The N-(nosylamino) group of and  can easily be deprotected to give the corresponding 4-amino-2,3-unsaturated-O-glycosides and , with an increased value to our glycosylation protocol.  相似文献   

19.
A common strategy for the total syntheses of the protected l-arabino- and l-ribo-C18-phytosphingosine (8 and 9, respectively), HCl salts of ent-2-epi-jaspine B (ent-6) and 3-epi-jaspine B (7) with efficient use of both flexible building blocks 26 and 27 was achieved. The key step of this approach was [3,3]-sigmatropic rearrangement of allylic trichloroacetimidate 21 and thiocyanate 22, which were derived from the known 2,3:5,6-di-O-isopropylidene-d-mannofuranose 18 as the source of chirality. The side chain functionality was installed utilizing a Wittig reaction.  相似文献   

20.
A chiral benzodiazepine derivative 1 was synthesized starting from o-nitrobenzoyl chloride and methyl l-prolinate hydrochloride. Diastereomeric (1R,2R,1′S)-(+)-2-[N-methyl-N-(α-phenylethyl)amino]cyclohexanol 3a and (1S,2S,1′S)-(+)-2-[N-methyl-N-(α-phenylethyl)amino]cyclohexanol 3b were synthesized starting from (S)-α-phenylethylamine and cyclohexene oxide via ring-opening, diastereomer separation and N-methylation. (S,S)-octahydrodipyrrolo[1,2-a:1′,2′-d]pyrazin 5 was synthesized from methyl l-prolinate. Chiral tertiary amines 1, 3a, 3b and 5 almost cannot catalyze the Baylis-Hillman reaction between o-nitrobenzaldehyde and methyl vinyl ketone (MVK). However, they functioned as efficient catalysts for this reaction in the presence of l-proline. The corresponding adducts were obtained in good yields with enantioselectivity of 83% ee, 81% ee, 51% ee and 66% ee, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号