首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we describe the synthesis of a new class of chiral phosphine-oxazolines and their application as ligands in iridium-catalyzed hydrogenations. Mechanistic aspects of olefin hydrogenation with this class of iridium catalysts are discussed and a selectivity model to help rationalize the results obtained is also presented.  相似文献   

2.
Iridium-based asymmetric reduction of ketones to chiral enantiomerically enriched alcohols has recently attracted attention by a number of research groups and interest in this area is growing. This review presents the different catalytic systems based on iridium complexes that have been used in asymmetric hydrosilylation, in asymmetric transfer hydrogenation (ATH) with alcohols or formic acid derivatives as reducing agents, and in asymmetric hydrogenation (H2 as reducing agent). A large variety of chiral ligands of various denticities and bearing various combination of coordinating atoms (N, P, S, O, C, …) have been used and will be presented. The last part critically reviews the mechanistic understanding of all the above transformations with specific reference to iridium catalysts.  相似文献   

3.
Chiral phosphine-phosphites provide an alternative class of ligands for the iridium catalyzed enantioselective hydrogenation of imines. Optimization of ligand structure has afforded enantioselectivities up to 84% ee in the reduction of N-aryl imines. A significant influence of backbone nature on enantioselectivity has also been observed.  相似文献   

4.
A chiral diphosphonite, derived from BINOL and with an achiral diphenyl ether backbone, is an excellent ligand for the Ir-catalyzed asymmetric hydrogenation of quinolines; achiral P-ligands serving as possible additives (ee = 73-96%).  相似文献   

5.
The relatively inexpensive chiral monodentate phosphoramidite (S)-MONOPHOS may be used in combination with pyridines to prepare iridium complexes effective for catalysis of asymmetric imine hydrogenation with comparable enantioselectivity to some of those containing more costly chiral bidentate phosphines. [Ir(cod)((S)-MONOPHOS)(L)]BArF (cod = 1,5-cyclooctadiene; L = 3-methylisoquinoline, acridine, 2,6-lutidine, acetonitrile, or 2,3,3-trimethylindolenine; BArF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) are efficient catalysts for the asymmetric hydrogenation of 2,3,3-trimethylindolenine. An important observation is that the catalyst containing acridine is more enantioselective than the catalyst derived from 2,3,3-trimethylindolenine which suggests that the other N-donor ligands are not readily displaced by the substrate during the catalytic cycle.  相似文献   

6.
7.
自国甫  尹承烈 《化学学报》1998,56(5):484-488
用旋光活性2, 2'-(1, 1'-联萘)二胺和2-吡啶基甲醛缩合得到的Schiff碱BPMBNDI[N, N'-二(2-吡啶基亚甲基)-(1, 1'-联萘)-2, 2'-二亚胺]为配体与[Ir(COD)Cl]2(COD=1, 5-环辛二烯)反应, 生成了10个光学活性铱配合物。研究它们在异丙醇对苯乙酮不对称氢转移反应中的光学诱导活性时, 发现10个催化剂均具有较高的立体选择性,其中[Ir(COD)(BPMBNDI)I]催化的光学产率高达84%。  相似文献   

8.
The chiral Ir catalytic system generated in situ from iridium hydride complex and chiral diaminodiphosphine ligand was employed in asymmetric transfer hydrogenation of aromatic ketones to give the corresponding optically active alcohols, with up to 99% ee in high yield were obtained even when the substrate-to-catalyst molar ratio reached 10000:1.  相似文献   

9.
Russian Chemical Bulletin - The chiral amidophosphite ligand in the iridium-catalyzed hydrogenation of 3-methylbenz[b][1,4]oxazin-2-ones in ethanol provides higher conversion and enantioselectivity...  相似文献   

10.
The reduction of prochiral ketones by hydrogen transfer from isopropanol is catalyzed by cationic iridium(I) complexes containing optically active Schiff bases. Optical yields of up to 33% have been obtained.  相似文献   

11.
[reaction: see text] A new class of chiral phosphine-oxazoline ligands have been developed. Chiral Ir complexes prepared from these ligands induced high enantioselectivities (66-90% ee) when applied to the asymmetric hydrogenation of acyclic aromatic N-arylimines.  相似文献   

12.
13.
Rhodium and iridium complexes of Schiff's bases derived from (1R,2R)- and (1S,2S)-diaminocyclohexane catalyze asymmetric transfer hydrogenation of alkyl aryl ketones in PriOH at room temperature to give chiral secondary alcohols (up to 65% ee).  相似文献   

14.
Complexes [IrH2(eta6-C6H6)(PiPr3)]BF4 (1) and [IrH2(NCMe)3(PiPr3)]BF4 (2) are catalyst precursors for homogeneous hydrogenation of N-benzylideneaniline under mild conditions. Precursor 1 generates the resting state [IrH2{eta5-(C6H5)NHCH2Ph}(PiPr3)]BF4 (3), while 2 gives rise to a mixture of [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)2(PiPr3)]BF4 (4) and [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)(NH2Ph)(PiPr3)]BF4 (5), in which the aniline ligand is derived from hydrolysis of the imine. The less hindered benzophenone imine forms the catalytically inactive, doubly cyclometalated compound [Ir{HN=CPh(C6H4)-kappaN,C}2(NH2CHPh2)(PiPr3)]BF4 (6). Hydrogenations with precursor 1 are fast and their reaction profiles are strongly dependent on solvent, concentrations, and temperature. Significant induction periods, minimized by addition of the amine hydrogenation product, are commonly observed. The catalytic rate law (THF) is rate = k[1][PhN=CHPh]p(H2). The results of selected stoichiometric reactions of potential catalytic intermediates exclude participation of the cyclometalated compounds [IrH{PhN=CH(C6H4)-kappaN,C}(S)2(PiPr3)]BF4 [S = acetonitrile (4), [D6]acetone (7), [D4]methanol (8)] in catalysis. Reactions between resting state 3 and D2 reveal a selective sequence of deuterium incorporation into the complex which is accelerated by the amine product. Hydrogen bonding among the components of the catalytic reaction was examined by MP2 calculations on model compounds. The calculations allow formulation of an ionic, outer-sphere, bifunctional hydrogenation mechanism comprising 1) amine-assisted oxidative addition of H2 to 3, the result of which is equivalent to heterolytic splitting of dihydrogen, 2) replacement of a hydrogen-bonded amine by imine, and 3) simultaneous H delta+/H delta- transfer to the imine substrate from the NH moiety of an arene-coordinated amine ligand and the metal, respectively.  相似文献   

15.
Treatment of [Ir2(mu-H)(mu-Pz)2H3(NCMe)(PiPr3)2] (1) with one equivalent of HBF4 or [PhNH=CHPh]BF4 affords efficient catalysts for the homogeneous hydrogenation of N-benzylideneaniline. The reaction of 1 with HBF4 leads to the trihydride-dihydrogen complex [Ir2(mu-H)(mu-Pz)2H2(eta2-H2)(NCMe)(PiPr3)2]BF4 (2), which has been characterized by NMR spectroscopy and DFT calculations on a model complex. Complex 2 reacts with imines such as tBuN=CHPh or PhN=CHPh to afford amine complexes [Ir2(mu-H)(mu-Pz)2H2(NCMe){L}(PiPr3)2]BF4 (L = NH(tBu)CH2Ph, 3; NH(Ph)CH2Ph, 4) through a sequence of proton- and hydride-transfer steps. Dihydrogen partially displaces the amine ligand of 4 to form 2; this complements a possible catalytic cycle for the N-benzylideneaniline hydrogenation in which the amine-by-dihydrogen substitution is the turnover-determining step. The rates of ligand substitution in 4 and its analogues with labile ligands other than amine are dependent upon the nature of the leaving ligand and independent on the incoming ligand concentration, in agreement with dissociative substitutions. Water complex [Ir2(mu-H)(mu-Pz)2H2(NCMe)(OH2)(PiPr3)2]BF4 (7) hydrolyzes N-benzylideneaniline, which eventually affords the poor hydrogenation catalyst [Ir2(mu-H)(mu-Pz)2H2(NCMe)(NH2Ph)(PiPr3)2]BF4 (11). The rate law for the catalytic hydrogenation in 1,2-dichloroethane with complex [Ir2(mu-H)(mu-Pz)2H2(OSO2CF3)(NCMe)(PiPr3)2] (8) as catalyst precursor is rate = k[8]{p(H2)}; this is in agreement with the catalytic cycle deduced from the stochiometric experiments. The hydrogenation reaction takes place at a single iridium center of the dinuclear catalyst, although ligand modifications at the neighboring iridium center provoke changes in the hydrogenation rate. Even though this catalyst system is also capable of effectively hydrogenating alkenes, N-benzylideneaniline can be selectively hydrogenated in the presence of simple alkenes.  相似文献   

16.
A novel catalytic system for the hydrogenation of dimethyl itaconate has been developed by using rhodium–diphosphite complexes. These chiral diphosphite ligands were derived from glucopyranoside, d-mannitol derivatives, and binaphthyl or H8-binaphthyl phosphochloridites. The ligands based on the methyl 3,6-anhydro-α-d-glucopyranoside backbone and (R)- and (S)-binaphthol and/or (R)- and (S)-2,2′-dihydroxy-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthol gave almost complete conversion of the dimethyl itaconate and both enantiomers of dimethyl 2-methylsuccinate with excellent enantioselectivities. The stereochemically matched combination of methyl 3,6-anhydro-α-d-glucopyranoside and H8-(S)-binaphthyl in ligand 2,4-bis{[(S)-1,1′-H8-binaphthyl-2,2′-diyl]-phosphite} methyl 3,6-anhydro-α-d-glucopyranoside was essential to afford dimethyl 2-methylsuccinate with up to 98% ee. The sense of the enantioselectivity of products was predominantly determined by the configuration of the biaryl moieties of the ligands. An initial screening of [Rh(cod)2]BF4 with these ligands in the hydrogenation of (E)-2-(3-butoxy-4-methoxybenzylidene)-3-methylbutanoic acid was carried out. Good enantioselectivity (75% ee) and low yield for (R)-2-(3-butoxy-4-methoxybenzyl)-3-methylbutanoic acid were obtained.  相似文献   

17.
Z-2-benzamido(acetamido)-3-(3-indolyl)-2-propenoic acids were hydrogenated with neutral and cationic rhodium(I) complexes containing the chiral diphosphine (–) or (+)–2,3-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)-butane [(–) or (+)–DIOP].
Z-2- ()-3-(3-)-2- () (I), (–) (+)-2,3--2,3--1,4- ()-.
  相似文献   

18.
《Tetrahedron: Asymmetry》2007,18(5):629-634
Chiral iridium Fc-PHOX complexes were readily prepared from Fc-PHOX, [Ir(cod)Cl]2 and NaBArF (or NaPF6) in high yields. They were applied as catalysts in the enantioselective hydrogenation of olefins to afford the corresponding products with high conversions and good enantioselectivities (up to 99% ee).  相似文献   

19.
The complexes formed in situ from Ir(COD)acac and chiral menthylphenylphosphines proved to be active catalysts in the hydrogen transfer reaction from isopropanol to prochiral ketones. When acetophenone was used, optical yields of up to 42% were achieved, the configuration of the carbinols being dependent on the bulkiness of the phosphine employed. Concerning the reaction rate, the activation process and the P/Ir ratio, the two menthyl-substituted phenylphosphines display different behaviour.  相似文献   

20.
[reaction: see text] Enol phosphinates, which are structural analogues of enol acetates, have for the first time been employed as substrates for Ir-catalyzed asymmetric hydrogenation. A number of enol phosphinates have been synthesized and reduced successfully with up to and above 99% ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号