首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulky 2,6-disubstituted aryl esters of phosphoric acid, 2,6-dimethylphenyl phosphate (dmppH 2), and 2,6-diisopropylphenyl phosphate (dippH 2) react differently with Cp*TiCl 3 (Cp* = C 5Me 5) under identical reaction conditions. While dippH 2 and Cp*TiCl 3 react in THF at 25 degrees C to yield air-stable trinuclear titanophosphate cage [(Ti 3Cp*Cl(mu 2 -O)(dipp) 2(dippH) 4(THF)].(toluene) ( 1), the similar reaction involving dmppH 2 yields the tetranuclear titanophosphate [Ti 4Cl 2(mu 2 -O) 2(dmpp) 2(dmppH) 6(THF) 2].(toluene) 2 ( 2). Interestingly, the change of titanium source to Ti(O iPr) 4 in the reaction with dippH 2 produces a pentanuclear titanophosphate, [Ti 5(mu 3-O)(O iPr) 6((dipp) 6(THF)] ( 3). Compounds 1- 3 were the only products isolated as single crystals from the respective reaction mixtures in 59, 75, and 54% yield, respectively. The new clusters 1- 3 have been characterized by elemental analysis, IR and NMR ( (1)H and (31)P) spectroscopy, and single crystal X-ray diffraction studies. The structural elucidation reveals that in the reactions leading to 1 and 2, extensive Cp*-Ti bond cleavage occurs, leaving only one residual Cp*-ligand in cluster 1 and none in 2. Closer analysis of the structures of 1- 3 shows common structural features which in turn imply that the formation of all three products could have proceeded via a common Ti-O-Ti dimeric building block.  相似文献   

2.
Reactions of Cp(2)TiCl(2) (Cp = eta(5)-cyclopentadienide) with 2 or 1 equiv of hybrid P-S ligands (L), (CH(3))(2)P(CH(2))(n)()S(-) (n = 2, dmpet; n = 3, dmppt), produced new dicyclopentadienyltitanium(IV) complexes with L, Cp(2)Ti(L-kappaS)(2) (1, L = dmpet; 2, L = dmppt) and [Cp(2)Ti(L-kappa(2)S,P)]BPh(4) (3, L = dmpet; 4, L = dmppt). The Ti(III) complexes, Cp(2)Ti(L-kappa(2)S,P) (5, L = dmpet; 6, L = dmppt), were prepared by the reaction of Cp(2)Ti(eta(3)-C(3)H(5)) with 1 equiv of L. The structures of complexes 1-6 were confirmed by X-ray diffraction analyses. It was found that complexes 3 and 5 were isostructural around Ti(IV) and Ti(III) centers: the Ti(IV)-S bond length in 3 (2.3498(9) A) is shorter by 0.14 A than Ti(III)-S in 5 (2.4877(7) A), while Ti(IV)-P (2.534(1) A) was merely 0.05 A shorter than Ti(III)-P (2.5844(7) A). The redox potential between 3 and 5 in acetonitrile was -1.14 V vs the ferricinium/ferrocene couple. A heterobimetallic complex that has the frame of complex 1, [Cp(2)Ti(dmpet)(2)Cu]PF(6) (7), was also isolated and structurally characterized: the Ti-Cu distance (2.95(1) A) was shorter than that in [Cp(2)Ti(SC(2)H(4)PPh(2))(2)Cu]BF(4), previously reported by White and Stephan. Structural characterization was also carried out for CpTi(dmpet-kappaS)(2)(dmpet-kappa(2)S,P) (8) and CpTiCl(2)(dmppt-kappa(2)S,P) (9), which were obtained by the reactions of Cp(or Cp)TiCl(3) (Cp = eta(5)-C(5)Me(5)(-)) with n equiv (n = 1-3) of L. The mutual site-exchange reaction between phosphorus atoms on a coordinated dmpet in the kappa(2)S,P mode and on two other coordinated dmpet's in the kappaS mode within complex 8 was analyzed by the variable-temperature (31)P[(1)H] dynamic NMR method. The kinetic parameters for this process, k(ex)(298) = 1.9 x 10(5) s(-)(1), DeltaH = 48 kJ mol(-)(1), and DeltaS = 17 J mol(-)(1) K(-)(1), as well as the rather long Ti(IV)-P distance (2.652(1) A), indicate the fluxional nature of the coordination geometry in complex 8.  相似文献   

3.
The cobalt(III) complexes, [(NH3)5CoBr]2+ and [(NH3)5CoI]2+ are reduced by Ti(II) solutions containing Ti(IV), generating nearly linear (zero-order) profiles that become curved only during the last few percent of reaction. Other Co(III)-Ti(II) systems exhibit the usual exponential traces with rates proportional to [Co(III)]. Observed kinetics of the biphasic catalyzed Ti(II)-Co(III)Br and Ti(II)-Co(III)I reactions support the reaction sequence: [Ti(II)(H20)n]2+ + [Ti(IV)F5]- (k1)<==>(k -1) [Ti(II)(H2O)(n-1)]2+ + [(H2O)Ti(IV)F5]-, [Ti(II)(H2O)(n-1)]2+ + Co(III) (k2)--> Ti(III) + Co(II) with rates determined mainly by the slow Ti(IV)-Ti(II) ligand exchange (k1 = 9 x 10(-3) M(-1) s(-1) at 22 degrees C). Computer simulations of the catalyzed Ti(II)-Co(III) reaction in perchlorate-triflate media yield relative rates for reduction by the proposed active [Ti(II)(H2O)(n-1)]2+ intermediate; k(Br)/k(I) = 8.  相似文献   

4.
2-pyridinethione (2-mercaptopyridine, H-2mp) undergoes rapid oxidative addition with 2 mol of the 17-electron organometallic radical *Cr(CO)3Cp (where Cp*=C5Me5), yielding hydride H-Cr(CO)3Cp* and thiolate (eta1-2mp)Cr(CO)3Cp*. In a slower secondary reaction, (eta1-2mp)Cr(CO)3Cp* loses CO generating the N,S-chelate complex (eta2-2mp)Cr(CO)2Cp* for which the crystal structure is reported. The rate of 2-pyridine thione oxidative addition with *Cr(CO)3Cp* (abbreviated *Cr) in toluene best fits rate=kobs[H-2mp][*Cr]; kobs(288 K)=22 +/- 4 M(-1) s(-1); DeltaH++=4 +/- 1 kcal/mol; DeltaS++=- 40 +/- 5 cal/mol K. The rate of reaction is the same under CO or Ar, and the reaction of deuterated 2-pyridine thione (D-2mp) shows a negligible (inverse) kinetic isotope effect (kD/kH=1.06 +/- 0.10). The rate of decarbonylation of (eta1-2mp)Cr(CO)3Cp* forming (eta2-2mp)Cr(CO)2Cp* obeys simple first-order kinetics with kobs (288 K)=3.1x10(-4) s(-1), DeltaH++=23 +/- 1 kcal/mol, and DeltaS++=+ 5.0 +/- 2 cal/mol K. Reaction of 4-pyridine thione (4-mercaptopyridine, H-4mp) with *Cr(CO)3Cp* in THF and CH2Cl2 also follows second-order kinetics and is approximately 2-5 times faster than H-2mp in the same solvents. The relatively rapid nature of the thione versus thiol reactions is attributed to differences in the proposed 19-electron intermediate complexes, [*(S=C5H4N-H)Cr(CO)3Cp*] versus [*(H-S-C6H5)Cr(CO)3Cp*]. In comparison, reactions of pyridyl disulfides occur by a mechanism similar to that followed by aryl disulfides involving direct attack of the sulfur-sulfur bond by the metal radical. Calorimetric data indicate Cr-SR bond strengths for aryl and pyridyl derivatives are similar. The experimental conclusions are supported by B3LYP/6-311+G(3df,2p) calculations, which also provide additional insight into the reaction pathways open to the thione/thiol tautomers. For example, the reaction between H* radical and the 2-pyridine thione S atom yielding a thionyl radical is exothermic by approximately 30 kcal/mol. In contrast, the thiuranyl radical formed from the addition of H* to the 2-pyridine thiol S atom is predicted to be unstable, eliminating either H* or HS* without barrier.  相似文献   

5.
Treatment of [{TiCp*(mu-NH)} 3(mu 3-N)] ( 1; Cp* = eta (5)-C 5Me 5) with yttrium and erbium halide complexes [MCl 3(THF) 3.5] and [MCpCl 2(THF) 3] (Cp = eta (5)-C 5H 5) gives cube-type adducts [Cl 3M{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}] and [CpCl 2M{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}]. An analogous reaction of 1 with [{MCp 2Cl} 2] in toluene affords [Cp 3M(mu-Cl)ClCpM{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}] (M = Y, Er).  相似文献   

6.
Reactions of secondary alkyl radicals with triethylborane and several of its complexes were studied. The H-atom transfer reactions from Et3B-OH2 and Et3B-OD2 were suppressed by addition of pyridine to the reaction mixture. Rate constants for reactions of secondary alkyl radicals with triethylborane and its complexes with water, deuterium oxide, methanol, and THF at ambient temperature were determined by radical clock methods. Cyclization of the 1-undecyl-5-hexenyl radical and ring opening of the 1-cyclobutyldodecyl radical were evaluated as clock reactions. The cyclobutylcarbinyl radical ring opening had the appropriate velocity for relatively precise determinations of the ratios of rate constants for H-atom transfer trapping and rearrangement, and these ratios combined with an estimated rate constant for the cyclobutylcarbinyl radical ring opening gave absolute values for the rate constants for the H-atom transfer reactions. For example, the triethylborane-water complex reacts with a secondary alkyl radical in benzene at 20 degrees C with a rate constant of 2 x 10(4) M(-1) s(-1). Variable temperature studies with the Et3B-CH3OH complex in toluene indicate that the hydrogen atom transfer reaction has unusually high entropic demand, which results in substantially more efficient hydrogen atom transfer trapping reactions in competition with radical ring opening and cyclization reactions at reduced temperatures.  相似文献   

7.
The titanium methyl cation [Cp*((tBu3P=N)TiCH3]+ [B(C6F5)4]- reacts rapidly with H2 to give the analogous cationic hydride [Cp*((tBu3P=N)TiH(THF)n]+ [B(C6F5)4]- (n = 0, 1), which can be trapped and isolated as its THF adduct 1 x THF (n = 1). When generated in the presence of chloro or bromobenzene, 1 undergoes C-X activation or ortho-C-H activation, depending on the amount of dihydrogen present in the reaction medium. At approximately 4 atm of H2, C-X activation is preferred, giving the halocations [Cp*((tBu3P= N)TiX]+ [B(C6F5)4]- (2X) and C6H6/biphenyl mixtures. At lower pressures of H2 (>1 atm), the beta-halophenyl cations [Cp*((tBu3P=N)Ti(2-X-C6H4)]+ [B(C6F5)4]- (3X) are the products isolated. In the absence of H2, these compounds are quite thermally stable, but undergo beta-halogen elimination upon moderate heating, to give 2X (approximately 20%) and compounds 4X which are the result of reaction between 2X and benzyne via addition of the benzyne C-C triple bond across the Ti-N bond of the phosphinimide ligand. Thus, three separate bond activation processes are operative in this system: direct C-X activation, ortho-C-H activation, and indirect C-X activation via beta-halogen elimination. Mechanistic studies on all three processes have been done and support a radical pathway for direct C-X cleavage, sigma-bond metathesis of the ortho-C-H bond of eta(1)-coordinated C6H5X, and beta-halogen elimination from base-free compound 3X.  相似文献   

8.
Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo and metal-hydroperoxo intermediates of M(III)MP-8 upon reaction of H(2)O(2) with Fe(III)MP-8 and Mn(III)MP-8 was investigated by rapid-scan stopped-flow spectroscopy and transient EPR. Two steps (k(obs1) and k(obs2)) were observed and analyzed for the reaction of hydrogen peroxide with both catalysts. The plots of k(obs1) as function of [H(2)O(2)] at pH 8.0 and pH 9.1 for Fe(III)MP-8, and at pH 10.2 and pH 10.9 for Mn(III)MP-8, exhibit saturation kinetics, which reveal the accumulation of an intermediate. Double reciprocal plots of 1/k(obs1) as function of 1/[H(2)O(2)] at different pH values reveal a competitive effect of protons in the oxidation of M(III)MP-8. This effect of protons is confirmed by the linear dependence of 1/k(obs1) on [H(+)] showing that k(obs1) increases with the pH. The UV-visible spectra of the intermediates formed at the end of the first step (k(obs1)) exhibit a spectrum characteristic of a high-valent metal-oxo intermediate for both catalysts. Transient EPR of Mn(III)MP-8 incubated with an excess of H(2)O(2), at pH 11.5, shows the detection of a free radical signal at g approximately equal to 2 and of a resonance at g approximately equal to 4 characteristic of a Mn(IV) (S = 3/2) species. On the basis of these results, the following mechanism is proposed: (i) M(III)MP-8-OH(2) is deprotonated to M(III)MP-8-OH in a rapid preequilibrium step, with a pK(a) = 9.2 +/- 0.9 for Fe(III)MP-8 and a pK(a) = 11.2 +/- 0.3 for Mn(III)MP-8; (ii) M(III)MP-8-OH reacts with H(2)O(2) to form Compound 0, M(III)MP8-OOH, with a second-order rate constant k(1) = (1.3 +/- 0.6) x 10(6) M(-1) x s(-1) for Fe(III)MP-8 and k(1) = (1.6 +/- 0.9) x 10(5) M(-1) x s(-1) for Mn(III)MP-8; (iii) this metal-hydroperoxo intermediate is subsequently converted to a high-valent metal-oxo species, M(IV)MP-8=O, with a free radical on the peptide (R(*+)). The first-order rate constants for the cleavage of the hydroperoxo group are k(2) = 165 +/- 8 s(-1) for Fe(III)MP-8 and k(2) = 145 +/- 7 s(-1) for Mn(III)MP-8; and (iv) the proposed M(IV)MP-8=O(R(*+)) intermediate slowly decays (k(obs2)) with a rate constant of k(obs2) = 13.1 +/- 1.1 s(-)(1) for Fe(III)MP-8 and k(obs2) = 5.2 +/- 1.2 s(-1) for Mn(III)MP-8. The results show that Compound 0 is formed prior to what is analyzed as a high-valent metal-oxo peptide radical intermediate.  相似文献   

9.
Methyl cations 1-Cp and 1-Cp*, stabilized by the tri-tert-butylphophinimine ligand and either C5H5 or C5Me5, were generated from the neutral dimethyl precursors and [Ph3C]+[B(C6F5)4]-. Reaction of these compounds with H2 resulted in contrasting reactions. For 1-Cp, hydrogenolysis of the Ti-CH3 group led to rapid reduction to Ti(III) and production of a cationic Ti(III) dimer, 2, presumably formed upon loss of H2 from a transiently generated Ti(IV) hydride. Compound 2 was characterized crystallographically and via its cleavage with donor solvents such as THF to form the monomeric [Cp(L)Ti(THF)2]+[B(C6F5)4]-, 3. In contrast, 1-Cp* reacted rapidly with H2 to form a cationic Ti(IV) hydride species, 4, which was resistant to reduction. While only moderately stable in solution under H2, a stable, isolable THF adduct preciptitated upon addition of THF, giving 4.THF, which was fully characterized, including via X-ray crystallography. Naked hydride 4 was very reactive toward haloarene solvents such as bromobenzene, giving the cationic bromide [Cp*(L)TiBr]+[B(C6F5)4]-, 5, which was fully characterized as its THF adduct 5.THF. The contrasting behavior of 1-Cp and 1-Cp* is a result of the greater steric protection and electron donation provided by the Cp* ligand relative to the Cp donor.  相似文献   

10.
The ionic metallocene complexes [Cp*(2)M][BPh(4)] (Cp* = C(5)Me(5)) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M = Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each contain one strongly distorted Cp* ligand, with one (V) or two (Ti) agostic C-H...M interactions involving the Cp*Me groups. For Sc and Ti, these Lewis acidic species react with fluorobenzene and 1,2-difluorobenzene to yield [Cp*(2)M(kappaF-FC(6)H(5))(n)][BPh(4)] (M = Sc, n = 2; M = Ti, n = 1) and [Cp*(2)M(kappa(2)F-1,2-F(2)C(6)H(4))][BPh(4)], the first examples of kappaF-fluorobenzene and kappa(2)F-1,2-difluorobenzene adducts of transition metals. With the perfluorinated anion [B(C(6)F(5))(4)](-), both Sc and Ti form [Cp*(2)M(kappa(2)F-C(6)F(5))B(C(6)F(5))(3)] contact ion pairs. The nature of the metal-fluoroarene interaction was studied by density functional theory (DFT) calculations and by comparison with the corresponding tetrahydrofuran (THF) adducts and was found to be predominantly electrostatic for all metals studied.  相似文献   

11.
The germanium hydroxide complexes LGe(mu-O)M(THF)Cp2 (M = Yb, 1; Y, 2; L = HC[C(Me)N(Ar)]2; Ar = 2,6-iPr2C6H3) were prepared by the reaction of LGeOH with Cp3M (M = Yb, Y) in THF at ambient temperature with the elimination of HCp. 1 and 2 are pale-yellow solids. Both compounds crystallize isotypically as monomers in a triclinic space group P (pseudo-merohedrally twinned, two independent molecules) and were found to be stable in the solid state and in solution at room temperature. The six-membered C3N2Ge rings in 1 and 2 display a boat conformation with the germanium and the gamma-C out-of-plane. The Ge-O-M skeleton exhibits a bent arrangement (angles 151-154 degrees ). The 1H NMR investigation of 2 confirmed that the solid-state structure is also found in solution.  相似文献   

12.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

13.
Jiang L  Choi HJ  Feng XL  Lu TB  Long JR 《Inorganic chemistry》2007,46(6):2181-2186
Reactions between K[TpFe(CN)3] (Tp- = hydrotris(1-pyrazolyl)borate) and M(ClO4)2 x 6H2O (M = Co or Ni) in a mixture of acetonitrile and methanol afford, upon crystallization via THF vapor diffusion, [Tp8(H2O)12Co6Fe8(CN)24](ClO4)4.12THF x 7H2O (1) and [Tp8(H2O)12Ni6Fe8(CN)24](ClO4)4.12THF x 7H2O (2). Both compounds contain cyano-bridged clusters with a face-centered cubic geometry, wherein octahedral CoII or NiII centers are situated at the face-centering sites. The results of variable-temperature magnetic susceptibility measurements indicate the presence of ferromagnetic exchange coupling within both molecules to give ground states of S = 7 and 10, respectively. Low-temperature magnetization data reveal significant zero-field splitting, with the best fits for the Co6Fe8 and Ni6Fe8 clusters yielding D = -0.54 and 0.21 cm-1, respectively; ac magnetic susceptibility measurements performed on both samples showed no evidence of the slow relaxation effects associated with single-molecule magnet behavior.  相似文献   

14.
Treatment of M(OiPr)4 (M = Ti, V) and [Zr(OEt)4]4 with excess 1,4-HOC6H4OH in THF afforded [M(OC6H4O)a(OC6H4OH)3.34-1.83a(OiPr)0.66-0.17a(THF)0.2]n (M = Ti, 1-Ti; V, 1-V, 0.91 < or = a < or = 1.82) and [Zr(1,4-OC6H4O)2-x(OEt)2x]n (1-Zr, x = 0.9). The combination of of 1-M (M = Ti, V, Zr) or M(OiPr)4 (M = Ti, V), excess 1,4- or 1,3-HOC6H4OH, and pyridine or 4-phenylpyridine at 100 degrees C for 1 d to 2 weeks afforded various 2-dimensional covalent metal-organic networks: [cis-M(mu 1,4-OC6H4O)2py2] infinity (2-M, M = Ti, Zr), [trans-M(mu 1,4-OC6H4O)2py2.py] infinity (3-M, M = Ti, V), solid solutions [trans-TixV1-x(mu 1,4-OC6H4O)2py2.py] infinity (3-TixV1-x, x approximately 0.4, 0.6, 0.9), [trans-M(mu 1,4-OC6H4O)2(4-Ph-py)2] infinity (4-M, M = Ti, V), [trans-Ti(mu 1,3-OC6H4O)2py2] infinity (5-Ti), and [trans-Ti(mu 1,3-OC6H4O)2(4-Ph-py)2] infinity (6-Ti). Single-crystal X-ray diffraction experiments confirmed the pleated sheet structure of 2-Ti, the flat sheet structure of 3-Ti, and the rippled sheet structures of 4-Ti, 5-Ti, and 6-Ti. Through protolytic quenching studies and by correspondence of powder XRD patterns with known titanium species, the remaining complexes were structurally assigned. With py or 4-Ph-py present, aggregation of titanium centers is disrupted, relegating the building block to the cis- or trans-(ArO)4Tipy2 core. The sheet structure types are determined by the size of the metal and the interpenetration of the layers, which occurs primarily through the pyridine residues and inhibits intercalation chemistry.  相似文献   

15.
Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s [M(Cp)(2)][OSO(2)C(8)F(17)](2)?nH(2)O?THF (M = Zr (2?a?3?H(2)O?THF), M = Ti (2?b?2?H(2)O?THF)) were synthesized by the reaction of [M(Cp)(2)]Cl(2) (M = Zr (1?a), M = Ti (1?b)) with nBuLi and C(8)F(17)SO(3)H (2?equiv) or with C(8)F(17)SO(3)Ag (2?equiv). The hydrate numbers (n) of these complexes were variable, changing from 0 to 4 depending on conditions. In contrast to well-known metallocene triflates, these complexes suffered no change in open air for a year. thermogravimetry-differential scanning calorimetry (TG-DSC) analysis showed that 2?a and 2?b were thermally stable at 300 and 180?°C, respectively. These complexes exhibited unusually high solubility in polar organic solvents. Conductivity measurement showed that the complexes (2?a and 2?b) were ionic dissociation in CH(3)CN solution. X-ray analysis result confirmed 2?a?3?H(2)O?THF was a cationic organometallic Lewis acid. UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2?a. Fluorescence spectra showed that the Lewis acidity of 2?a fell between those of Sc(3+) (λ(em)=474?nm) and Fe(3+) (λ(em)=478?nm). ESR spectra showed the Lewis acidity of 2?a (0.91?eV) was at the same level as that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV), while the Lewis acidity of 2?b (1.06?eV) was larger than that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV). They showed high catalytic ability in carbonyl-compound transformation reactions, such as the Mannich reaction, the Mukaiyama aldol reaction, allylation of aldehydes, the Friedel-Crafts acylation of alkyl aromatic ethers, and cyclotrimerization of ketones. Moreover, the complexes possessed good reusability. On account of their excellent catalytic efficiency, stability, and reusability, the complexes will find broad catalytic applications in organic synthesis.  相似文献   

16.
New polynuclear complexes, (L1)3M2 [M2 = Cr(III) (4a,4b), Fe(III) (5), Co(III) (8)], (L1)2M2(L2)2 [M2 = Co(II) (7), Ni(II) (9)], (L1)2M2(O)L2 [M2 = V(IV) (6)] and L1M2Cp2 [M2 = Ti(III) (10)] with L1 = (CO)5M1=C[C=NC(CH3)=CHS](O-)(M1 = Cr or W) and L2 = 4-methylthiazole or THF, are described. The molecular structures of these complexes determined by X-ray diffraction show that the Fischer-type carbene complexes act as bidentate ligands towards the second metal centre, coordinating through C(carbene)-attached O-atoms and imine N-atoms of the thiazolyl groups to form five-membered chelates with the oxygen atoms in the mer configuration. Isostructural complexes have similar characteristic band patterns in their far-IR spectra. Cyclic voltammetry of selected complexes reveals the oxidation of the carbene complex ligand between 1.01 and 1.29 V. Oxidation of the central metal (M2) takes place at 0.56 and 0.86 V for 7 and 9, respectively. Three stepwise reductions of Cr(III) to Cr(0) occur for 4a and 4b in the region -0.51 to -1.58 V. These new ligand types and other variants thereof should find application in ligand design with the first metal -- and other ligands attached thereto -- in the carbene complex ligand, playing an important role.  相似文献   

17.
Two new complexes (Cp)2Ti(Sal)2 and(Cp)2Ti(Clo)2(Cp=Cyclopentadienyl η5-C5H5), have been synthesized in anhydrous THF by the reaction of Hsal(o-hydroxybenzoic acid, salicylate acid) or Hclo[N-(m-chloro-phe-nyl) anthranili acid, acidum clofenamicum] with (Cp)2TiCl2 and characterized by means of elemental analyses, IR, 1H NMR, 13C NMR, UV and molar conductivity. In complex (Cp)2Ti(Sal)2 or (Cp)2Ti(Clo)2, the oxygen atom of the carboxyl group coordinates to Ti(IV) in a monodentate manner. The inhibitory action of the complexes on mouse ear tumefaction caused by croton oil and rat foot granulation growth caused by cotton balls is higher than that of the corresponding ligands Hsal, Hclo and [(Cp)2TiCl2], whereas their toxicity is lower than those of the free ligands.  相似文献   

18.
The fundamental nature of Ti(III) complexes generated in tetrahydrofuran by reduction of Cp(2)TiCl(2) has been clarified by means of cyclic voltammetry and kinetic measurements. While the electrochemical reduction of Cp(2)TiCl(2) leads to the formation of Cp(2)TiCl(2)(-), the use of metals such as Zn, Al, or Mn as reductants affords Cp(2)TiCl and (Cp(2)TiCl)(2) in a mixture having a dimerization equilibrium constant of 3 x 10(3) M(-)(1), independent of the metal used. Thus, we find it unlikely that the trinuclear complexes or ionic clusters known from the solid phase should be present in solution as previously suggested. The standard potentials determined for the redox couples Cp(2)TiCl(2)/Cp(2)TiCl(2)(-), (Cp(2)TiCl)(2)(+)/(Cp(2)TiCl)(2), Cp(2)TiCl(+)/Cp(2)TiCl, and Cp(2)Ti(2+)/Cp(2)Ti(+) increase in the order listed. However, the reactivity of the different Ti(III) complexes is assessed as (Cp(2)TiCl)(2) greater, similar Cp(2)TiCl approximately Cp(2)Ti(+) > Cp(2)TiCl(2)(-) in their reactions with benzyl chloride and benzaldehyde. None of the reactions proceed by an outer-sphere electron transfer pathway, and clearly the inner-sphere character is much higher in the case of Cp(2)Ti(+) than for (Cp(2)TiCl)(2), Cp(2)TiCl, and in particular Cp(2)TiCl(2)(-). As to the electron acceptor, the inner-sphere character increases, going from benzyl chloride to benzaldehyde, and it is suggested that the chlorine atom in benzyl chloride and the oxygen atom in benzaldehyde may function as bridges between the reactants in the transition state.  相似文献   

19.
Rate constants for heterolytic fragmentation of beta-(ester)alkyl radicals were determined by a combination of direct laser flash photolysis studies and indirect kinetic studies. The 1,1-dimethyl-2-mesyloxyhexyl radical (4a) fragments in acetonitrile at ambient temperature with a rate constant of k(het) > 5 x 10(9) s(-1) to give the radical cation from 2-methyl-2-heptene (6), which reacts with acetonitrile with a pseudo-first-order rate constant of k = 1 x 10(6) s(-1) and is trapped by methanol in acetonitrile in a reversible reaction. The 1,1-dimethyl-2-(diphenylphosphatoxy)hexyl radical (4b) heterolyzes in acetonitrile to give radical cation 6 in an ion pair with a rate constant of k(het) = 4 x 10(6) s(-1), and the ion pair collapses with a rate constant of k < or = 1 x 10(9) s(-1). Rate constants for heterolysis of the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(diphenylphosphatoxy)ethyl radical (5a) and the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(trifluoroacetoxy)ethyl radical (5b) were measured in various solvents, and an Arrhenius function for reaction of 5a in THF was determined (log k = 11.16-5.39/2.3RT in kcal/mol). The cyclopropyl reporter group imparts a 35-fold acceleration in the rate of heterolysis of 5a in comparison to 4b. The combined results were used to generate a predictive scale for heterolysis reactions of alkyl radicals containing beta-mesyloxy, beta-diphenylphosphatoxy, and beta-trifluoroacetoxy groups as a function of solvent polarity as determined on the E(T)(30) solvent polarity scale.  相似文献   

20.
The luminescence from SmI(2) in THF can be readily quenched by a variety of electron acceptors. In the case of organohalides, the reaction is quite fast; for example, for dichloromethane the rate constant is 2.7 x 10(8) M(-)(1) s(-)(1). Electron transfer leads to halide loss and formation of the carbon-centered radical. In the case of benzyl chloride, the benzyl radicals produced can be readily detected using laser flash photolysis techniques. This electron-transfer reaction has been used as a source of benzyl radicals in order to determine the rate constant for their reaction with SmI(2); the value obtained is (5.3 +/- 1.4) x 10(7) M(-)(1) s(-)(1) in THF at room temperature. The effect of HMPA on the spectroscopic properties of SmI(2) has also been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号