首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The coagulation and colloidal stability of tobacco mosaic virus (TMV) in alcohol-water-LiCl solutions were studied. Without the addition of LiCl salt, the coagulation was promoted by the increase of hydrophobicity of the alcohols that is proportional to their alkyl chain length and concentration. Addition of the LiCl salt reduced the electrostatic repulsion between TMV particles resulting in coagulation in methanol-water and ethanol-water solutions. In water-alcohol-LiCl mixture, the coagulation of TMV was driven by both the hydrophobic interaction of the solution and the screening effect of the salt simultaneously. To understand the particle-particle interaction during the coagulation, the interaction energy was calculated using DLVO theory. Considering the electrostatic repulsive energy, van der Waals attractive energy, and hydrophobic interaction energy, the total energy profiles were obtained. The experiment and model calculation results indicated that the increase of alcohol concentration would increase hydrophobic attraction energy so that the coagulation is promoted. These results provide the fundamental understanding on the coagulation of biomolecular macromolecules.  相似文献   

2.
The interaction between particles in a colloidal system can be significantly affected by their bridging by polyelectrolyte chains. In this paper, the bridging is investigated by using a self-consistent field approach which takes into account the van der Waals interactions between the segments of the polyelectrolyte molecules and the plates, as well as the electrostatic and volume exclusion interactions. A positive contribution to the force between two plates is generated by the van der Waals interactions between the segments and the plates. This positive (repulsive) contribution plays an important role in the force when the distances between the plates are small. With increasing van der Waals interaction strength between segments and plates, the force between the plates becomes more repulsive at small distances and more attractive at large distances. When the surfaces of the plates have a constant surface electrical potential and a charge sign opposite to that of the polyelectrolyte chains, the force between the two plates becomes less attractive as the bulk polyelectrolyte concentration increases. This behavior is due to a higher bulk counterion concentration dissociated from the polyelectrolyte molecules. At short distances, the force between plates is more repulsive for stiffer chains. A comparison between theoretical and experimental results regarding the contraction of the interlayer separation between the platelets of vermiculite clays against the concentration of poly(vinyl methyl ether) was made.  相似文献   

3.
The hydrodynamic interaction between a rising bubble and a sedimenting particle during microbubble flotation is considered. The effects of attractive van der Waals forces and attractive or repulsive electrostatic forces are included. A mathematical model is presented which is used to perform a trajectory analysis and to calculate collision efficiencies between the bubble and particle. It is shown that collision efficiencies and the nature of the bubble-particle interactions are strongly dependent on the relative strengths of the van der Waals and electrostatic forces and on the lengthscales over which these forces act. It is demonstrated that optimal operating conditions can be suggested to achieve efficient microbubble flotation by correctly accounting for the interaction of van der Waals, electrostatic, and hydrodynamic forces. Copyright 1999 Academic Press.  相似文献   

4.
We report the study on the unique driving forces of the self-assembly of fully hydrophilic, soluble {Mo72Fe30} macroanions into single-layer, vesicle-like "blackberry" structures in water and mixed solvents. The hydrophobic interaction that is responsible for the vesicle formation of amphiphilic surfactants does not contribute to the current blackberry formation because of the absence of hydrophobic moiety. The hydrogen bond, van der Waals force, and chemical interaction only play minor roles. Laser light scattering and conductance measurements on a series of {Mo72Fe30}/ethanol/H2O solutions show that a certain amount of negative charges are necessary for the self-assembly, clearly indicating the existence of long-range attraction between macroanions, presumably due to the small counterions in between. The experimental results suggest that the charges on macroanions play a dual effect: short-range electrostatic repulsion and long-range "like-charge attraction", which is the major source of attractive force between hydrophilic macroanions, while van der Waals force, hydrogen bonds, and temporary inter-{Mo72Fe30} Fe-O-Fe chemical linking may also have minor contributions.  相似文献   

5.
The interparticle interactions in concentrated suspensions are described. Four main types of interactions can be distinguished: (i) "Hard-sphere" interactions whereby repulsive and attractive forces are screened. (ii) "Soft" or electrostatic interactions determined by double layer repulsion. (iii) Steric repulsion produced by interaction between adsorbed or grafted surfactant and polymer layers. (iv)and van der Waals attraction mainly due to London dispersion forces. Combination of these interaction energies results in three main energy-distance curves: (i) A DLVO type energy-distance curves produced by combination of double layer repulsion and van der Waals attraction. For a stable suspension the energy-distance curve shows a "barrier" (energy maximum) whose height must exceed 25kT (where k is the Boltzmann constant and T is the absolute temperature). (ii) An energy-distance curve characterized by a shallow attractive minimum at twice the adsorbed layer thickness 2δ and when the interparticle-distance h becomes smaller than 2δ the energy shows a sharp increase with further decrease of h and this is the origin of steric stabilization. (iii) an energy-distance curve characterized by a shallow attractive minimum, an energy maximum of the DLVO type and a sharp increase in energy with further decrease of h due to steric repulsion. This is referred to as electrosteric repulsion. The flocculation of electrostatically and sterically stabilized suspensions is briefly described. A section is devoted to charge neutralization by polyelectrolytes and bridging flocculation by polymers. A distinction could be made between "dilute", "concentrated" and "solid suspensions" in terms of the balance between the Brownian motion and interparticle interaction. The states of suspension on standing are described in terms of interaction forces and the effect of gravity. The bulk properties (rheology) of concentrated suspensions are described starting with the case of very dilute suspensions (the Einstein limit with volume fraction Φ≤0.01), moderately concentrated suspensions (0.2>Φ≥0.1) taking into account the hydrodynamic interaction and concentrated suspensions (Φ>0.2) where semi-empirical theories are available. The rheological behavior of the above four main types of interactions is described starting with "hard-sphere" systems where the relative viscosity-volume fraction relationship could be described. The rheology of electrostatically stabilized suspensions was described with particular reference to the effect of electrolyte that controls the double layer extension. The rheology of sterically stabilized systems is described using model polystyrene suspensions with grafter poly(ethylene oxide) layers. Finally the rheology of flocculated suspensions was described and a distinction could be made between weakly and strongly flocculated systems.  相似文献   

6.
We have controlled the structure of self-spreading lipid bilayer membranes prepared on surface-oxidized silicon substrates by changing electrolyte concentration. Analysis of the fluorescence intensity, considering the optical interference effect, clarified the stacking structure of the lipid membrane. By varying the electrolyte concentration, we can vary the number of single multilamellar lobes adsorbed on the underlying self-spreading bilayer. This dependence of the stacking ability on the electrolyte concentration was investigated on the basis of changes in the bilayer-lobe interaction energies, including van der Waals, electrostatic double layer, and hydration interaction energies. Theoretical estimation suggests that the observed electrolyte concentration dependence can be explained by the combination of the van der Waals attractive interaction energy and the repulsive double-layer interaction energy.  相似文献   

7.
The effective interaction between two colloidal particles in a bath of monovalent co- and counterions is studied by means of lattice Monte Carlo simulations with the primitive model. The internal electrostatic energy as a function of the colloid distance is studied fixing the position of the colloids. The free energy of the whole system is obtained introducing a bias parabolic potential, that allows us to sample efficiently small separations between the colloidal particles. For small charges, both the internal and free energy increase when the colloids approach each other, resulting in an effective repulsion driven by the electrostatic repulsion. When the colloidal charge is large enough, on the other hand, the colloid-ion coupling is strong enough to form double layers. The internal energy in this case decreases upon approaching the colloids because more ions enter the double layer. This attractive contribution to the interaction between the colloids is stronger for larger charges and larger ionic concentrations. However, the total free energy increases due to the loss of ionic entropy, and resulting finally in a repulsive interaction potential driven by the entropic contributions. The loss of ionic entropy can be almost quantitatively reproduced with the ideal contribution, the same level of approximation as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The overall behavior is captured by the DLVO theory qualitatively, and a comparison is made with the functional form predicted by the theory, showing moderate agreement.  相似文献   

8.
Due to the interplay of Coulombic repulsion and attractive dipolar and van der Waals interactions, solutions of globular proteins display a rich variety of phase behavior featuring fluid-fluid and fluid-solid transitions that strongly depend on solution pH and salt concentration. Using a simple model for charge, dispersion and dipole-related contributions to the interprotein potential, we calculate phase diagrams for protein solutions within the framework of second-order perturbation theory. For each phase, we determine the Helmholtz energy as the sum of a hard-sphere reference term and a perturbation term that reflects both the electrostatic and dispersion interactions. Dipolar effects can induce fluid-fluid phase separation or crystallization even in the absence of any significant dispersion attraction. Because dissolved electrolytes screen the charge-charge repulsion more strongly than the dipolar attraction, the ionic strength dependence of the potential of mean force can feature a minimum at intermediate ionic strengths offering an explanation for the observed nonmonotonic dependence of the phase behavior on salt concentration. Inclusion of correlations between charge-dipole and dipole-dipole interactions is essential for a reliable calculation of phase diagrams for systems containing charged dipolar proteins and colloids.  相似文献   

9.
We study the effect of coupling the electrostatic and low frequency electrodynamic responses of colloidal systems. Exact results are reported for the van der Waals free energy of interaction of non-uniform electrolyte across planar dielectric and planar charged dielectric across non-uniform electrolyte. In both cases, the results depend on the double layer repulsion.  相似文献   

10.
The forces of interaction between a flat poly(tetrafluoroethylene) (PTFE) surface and gold spheres (of radii 3–8 μm) were measured as a function of apparent surface separation for different intervening media. For air, fluorinated alkanes, and polar liquids the interaction between the surfaces was found to be attractive. With intervening liquids of low-polarity the interaction was found to be repulsive. This repulsion is attributed to a negative composite Hamaker coefficient leading to van der Waals repulsion.  相似文献   

11.
We investigate the effect of monopolar charge disorder on the classical fluctuation-induced interactions between randomly charged net-neutral dielectric slabs and discuss various generalizations of recent results [A. Naji et al., Phys. Rev. Lett. 104, 060601 (2010)] to highly inhomogeneous dielectric systems with and without statistical disorder correlations. We shall focus on the specific case of two generally dissimilar plane-parallel slabs, which interact across vacuum or an arbitrary intervening dielectric medium. Monopolar charge disorder is considered to be present on the bounding surfaces and/or in the bulk of the slabs, may be in general quenched or annealed and may possess a finite lateral correlation length reflecting possible "patchiness" of the random charge distribution. In the case of quenched disorder, the bulk disorder is shown to give rise to an additive long-range contribution to the total force, which decays as the inverse distance between the slabs and may be attractive or repulsive depending on the dielectric constants of the slabs. By contrast, the force induced by annealed disorder in general combines with the underlying van der Waals forces in a nonadditive fashion, and the net force decays as an inverse cube law at large separations. We show, however, that in the case of two dissimilar slabs, the net effect due to the interplay between the disorder-induced and the pure van der Waals interactions can lead to a variety of unusual nonmonotonic interaction profiles between the dielectric slabs. In particular, when the intervening medium has a larger dielectric constant than the two slabs, we find that the net interaction can become repulsive and exhibit a potential barrier, while the underlying van der Waals force is attractive. On the contrary, when the intervening medium has a dielectric constant between that of the two slabs, the net interaction can become attractive and exhibit a free energy minimum, while the pure van der Waals force is repulsive. Therefore, the charge disorder, if present, can drastically alter the effective interaction between net-neutral objects.  相似文献   

12.
A mathematical model for analyzing the van der Waals interaction between the internal aqueous droplets (W(1)) and the external aqueous phase (W(2)) of double emulsions has been established. The effects of Hamaker constants of the materials forming the system, especially those of the two different adsorbed surfactant layers with uniform density (A(1) and A(2)), on the van der Waals interaction were investigated. The overall van der Waals interaction across the oil film is a combined result of four individual parts, that is, W(1)-W(2), A(1)-A(2), W(1)-A(1), and A(2)-W(2) van der Waals interaction, and it may be either attractive or repulsive depending on many factors. It was found that the overall van der Waals interaction is dominated by the W(1)-W(2) interaction at large separation distances between the W(1)/O and O/W(2) interfaces, while it is mostly determined by the A(1)-A(2) interaction when the two interfaces are extremely close. Specifically, in the cases when the value of the Hamaker constant of the oil phase is intermediate between those of W(1) and W(2) and there is a thick oil film separating the two interfaces, a weak repulsive overall van der Waals interaction will prevail. If the Hamaker constant of the oil phase is intermediate between those of A(1) and A(2) and the two interfaces are very close, the overall van der Waals interaction will be dominated by the strong repulsive A(1)-A(2) interaction. The repulsive van der Waals interaction at such cases helps stabilize the double emulsions.  相似文献   

13.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

14.
Implicit solvent hydration free energy models are an important component of most modern computational methods aimed at protein structure prediction, binding affinity prediction, and modeling of conformational equilibria. The nonpolar component of the hydration free energy, consisting of a repulsive cavity term and an attractive van der Waals solute-solvent interaction term, is often modeled using estimators based on the solvent exposed solute surface area. In this paper, we analyze the accuracy of linear surface area models for predicting the van der Waals solute-solvent interaction energies of native and non-native protein conformations, peptides and small molecules, and the desolvation penalty of protein-protein and protein-ligand binding complexes. The target values are obtained from explicit solvent simulations and from a continuum solvent van der Waals interaction energy model. The results indicate that the standard surface area model, while useful on a coarse-grained scale, may not be accurate or transferable enough for high resolution modeling studies of protein folding and binding. The continuum model constructed in the course of this study provides one path for the development of a computationally efficient implicit solvent nonpolar hydration free energy estimator suitable for high-resolution structural and thermodynamic modeling of biological macromolecules.  相似文献   

15.
The processes of attachment and detachment of small or medium-sized particles to relatively large bubbles during microflotation are considered in terms of the heterocoagulation theory. Calculations are made for the conditions that the surface potentials are of similar sign and constant, that one of the surface potentials is small, that hydrophobic attraction is absent, and that there are no surface deformations. Under these conditions bubble-particle aggregates may form as a result of an electrostatic attraction which exceeds the repulsive van der Waals force at intermediate distances. Next to electrostatic and van der Waals forces, hydrodynamic and gravitational forces are considered. These forces may overcome the electrostatic repulsion at large distances and promote particle bubble attachment. Strong electrostatic attraction at small distances, arising at a large difference of the surface potentials of the bubble and the particle and of low electrolyte concentrations, can prevent subsequent detachment by hydrodynamic and gravitational forces. With increasing electrolyte concentration the electrostatic barrier increases and the attractive electrostatic force diminishes. As a result, a critical electrolyte concentration for microflotation exists. Above this concentration attachment may still occur but it is followed by detachment. At lower electrolyte concentrations the electrostatic attractive force prevents the detachment. The dependence of the critical electrolyte concentration on the values of the bubble and particle potentials and the Hamaker constant is calculated. The critical concentration does not depend on particle or bubble size if the absolute values of the total detachment force and the total pressing force coincide, which is the case for Stokes and potential flow. For every electrolyte concentration lower than the critical value there are two critical particle sizes that limit the flotation possibility. For small particle sizes attachment is impossible because the pressing force is smaller than the electrostatic barrier. For large particle sizes detachment cannot be prevented because the detachment force exceeds the maximum electrostatic attraction. A microflotation domain of intermediate particle sizes exists in which irreversible heterocoagulation occurs. Copyright 2001 Academic Press.  相似文献   

16.
17.
The van der Waals pyrrole dimer is studied using supermolecular and perturbation ab initio treatment with inclusion of correlation energy. The influence of selected geometry variations on the interaction energy components is investigated. Our calculations verified the minimum on the potential energy surface deduced from microwave spectra. Its stability is possibly related not to the extremal values of the selected interaction energy contributions but its physical origin is connected with the delicate equilibrium between the repulsive and attractive forces. Any structure variation connected with the extremal attraction energy is more than compensated for by the repulsion energy. Received: 11 June 1998 / Accepted: 6 October 1998 / Published online: 1 February 1999  相似文献   

18.
We consider the interaction of colloidal spheres in the presence of mono-, di-, and trivalent ions. The colloids are stabilized by electrostatic repulsion due to surface charges. The repulsive part of the interaction potential Ψ(d) is deduced from precise measurements of the rate of slow coagulation. These "microsurface potential measurements" allow us to determine a weak repulsion in which Ψ(d) is of the order of a few k(B)T. These data are compared to ζ potential measured under similar conditions. At higher concentrations both di- and trivalent counterions accumulate at the very proximity of the particle surface leading to charge reversal. The salt concentration c(cr) at which charge reversal occurs is found to be always above the critical coagulation concentration c(ccc). The analysis of Ψ(d) and of the ζ potential demonstrates, however, that adsorption of multivalent counterions starts far below c(cr). Hence, colloid stability in the presence of di- and trivalent ions cannot be described in terms of a DLVO ansatz assuming a surface charge that is constant with regard to the ionic strength.  相似文献   

19.
We present model calculations for the interaction of a protein-like inhomogeneously charged nanoscale object with a layer of densely grafted polyelectrolytes ("polyelectrolyte brush"). The motivation of this work is the recent experimental observation that proteins that carry an overall negative charge are absorbed into negatively charged polyelectrolyte brushes. Two-gradient self-consistent field (2G-SCF) calculations have been performed to unravel the physical mechanism of the uptake of protein thus effected. Our results prove that an overall neutral, protein-like object can electrostatically be attracted and therefore spontaneously driven into a polyelectrolyte brush when the object has two faces (patches, domains), one with a permanent positive charge and the other with a permanent negative charge. Using a 2G-SCF analysis, we evaluate the free energy of insertion, such that the electric dipole of the inclusion is oriented parallel to the brush surface. An electroneutral protein-like object is attracted into the brush because the polyelectrolyte brush interacts asymmetrically with the charged patches of opposite sign. At high ionic strength and low charge density on the patches, the attraction cannot compete with the repulsive excluded-volume interaction. However, for low ionic strengths and sufficiently high charge density on the patches, a gain on the order of k(B)T per charge becomes possible. Hence, the asymmetry of interaction for patches of different charges may result in a total attractive force between the protein and the brush. All results obtained herein are in excellent agreement with recent experimental data.  相似文献   

20.
The interaction energy for the cyclic CH4 trimer is studied in terms of symmetry-adapted perturbation theory. The interaction energy around the van der Waals minimum is dominated by attractive dispersion energy, and the repulsive contribution at the smaller angle region is due to the first-order exchange energy. The total interaction energy is approximated by additive two-body components, because of a mutual cancellation between nonadditive three-body ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号